Term symbols: why bother?

Since your freshmen year, you have been using electron configuration notation. It is an
easy and intuitive way to write electronic states, and can even be used to express excited
states. For example, the ground state of C is 1s°2s’p”> We could write an excited state as
1s%2s°p*3s’

What’s wrong with this?

This notation is not specific enough. 152252p2 is NOT a single state. There are 36 different
microstates that have this same configuration. Here are a few of them:
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Notice that they have different multiplicities and angular momenta. The energies of these
states are NOT the same. Unless we want to write out all of the microstates every time we talk
about electronic states, we need to invent a compact notation that can sum up all of this
information in a concise and useful way.

The principal quantum number n

n is a measure of the quantized energy of the electron. It tells you which energy level
the electron occupies. The lowest possible value is one, and there is no theoretical limit to how
high it can go (although in practice, reaching very high levels of n causes ionization, at which
point it stops making sense to talk about energy levels). The principal number can be used to
calculate the quantized energy by this (hopefully familiar) formula:

E, = Rhcz?/n?

where R is the Rydberg constant and Z is the atomic number

The orbital angular momentum quantum number | (little “el”)

| is the quantum number that determines the magnitude of the electron’s angular
momentum. | does not say anything about the direction of the angular momentum. The
formula is:

L>=h%l(1+1) where L?is the magnitude of the angular momentum



Electrons in higher energy levels (e.g. higher n numbers) have a wider range of | values to
choose from. L can be any integer number between n-1 and 0. For example, an electron in
n =4 could have an | value of 3, 2, 1 or 0. But there is a better way to think about I.

The angular momentum g # tells you which type of orbital the electron is in. It follows a
very simple code:

=0 - s orbital
I=1 - p orbital
=2 = d orbital
I=3 - f orbital

You should know from general chemistry that the first energy level only has an s orbital, that
the second energy level has s and p orbitals, and so on. So you don’t really need a formula to
figure out which combinations of | and n are possible. You should realize right away that
n=11=2 is impossible, because there aren’t d orbitals on the first energy level!

Note that these rules imply that different types of orbitals grant different amounts of
angular momentum to any electrons that occupy them. s orbitals are extremely symmetric, so
they have a low value of L? [h%0(0 + 1) = h?]. forbitals are flatter and more planar, so they have
higher amounts of angular momentum [h?3(3 + 1) = 9h? ]

The magnetic quantum number m,

m; tells you which direction the electron’s angular momentum is pointing. It can be
used to calculate how much of the momentum is projecting onto the z axis of the atom:



L,=mh where L, is the z-component of the angular
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m, tells you which sub-orbital the electron is in. It can range in value from | to —I. Again,
you shouldn’t need a formula to realize what combinations make sense. You should know that
there is only one s orbital per level, three p orbitals, five d orbitals, and so on.

m 0 -1 0 1 -2 -1 0 1 2
For =0 (s type), m;must be 0 For I=1 (p type), m,can be -1,0,1 For =2 (d type), m,can be -2,-1,0,1,2

Interlude: inherent spin

All particles have a property called spin. Spin is the inherent angular momentum of a
particle. We often pretend that spin is the angular momentum that comes from the particle
rotating about its own axis. For many purposes, this is a very good approximation to the truth.
For example, an electron’s spin causes it to project a magnetic field, which is what you would
expect from a rotating charged body



+— Magnetic field

+— Spinning charged
particle

However, the magnetic dipole produces this way does not exactly match with what classical

physics would predict.

There are other important diffences between the quantum mechanical concept of spin
and the classical concept of rotation. Most significantly, spin is a fixed value. All electrons
everywhere have the exact same spin. It cannot be made to “spin faster” or “spin slower.” It is

a fixed physical property, like mass or charge.

All particles have a spin quantum number, called s, that can be used to calculate the

inherent angular momentum. The formula is:
Electrons all have an s value of %, so the inherent angular momentum of an electron is:
" “1;_?
2(3+ 1}
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This number will be the same for all electrons everywhere. Please note that the

inherent angular momentum is different from the normal angular momentum that we were
discussing earlier. The first one comes from the electron’s spin, and the second one comes

from the electron’s motion about the orbital.

The spin magnetic quantum number m;

All electrons have the same amount of inherent angular momentum, but angular
momentum is a vector quantity and can point in different directions. Just like how m, told you



which direction the electron’s orbital angular momentum was pointing in, m; tells you which
way the electron’s inherent angular momentum points.

When in an orbital, electron spins can only be oriented in two directions, which we
commonly call “up” and “down.” There are no in between states allowed. When the electron is
oriented along the positive z-axis, mg is equal to 2. When the spin is pointed along the negative
z-axis, mg is equal to —5.

The words up and down are misleading. The electron spins are not pointing directly
along the z-axis. Moreover, an “up” electron is not necessarily pointing peg opposite to a
“down” electron. How is this possible? It is because the spin axis is at an angle:

A m= +% electron

When we say that an electron is oriented “up,” what we mean is that the z-component of its
inherent spin is pointing up, not that the whole vector is literally pointing straight up the z-axis.
The spin magnetic quantum number can be used to calculate exactly how much of the
electron’s inherent angular momentum is oriented along the z-axis by this simple formula:

S,=m.M

Since the only possible values for mgs are % and =%, S, will always be equal to either
h
2
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or -

The illustration above is a better way thinking of electron orientation than the simple up
and down model, but it is still misleading. The diagram shows the electron in a definite



orientation, but electrons are quantum mechanical objects and are subject to quantum

uncertainty. We will return to this issue when we start talking about multiplicity.

Symbol Name Allowed Associated Formula Notes
Range property

n Principal [1,0°] energy En = RhcZ?/n® | Indicates
guantum energy level
number
orbital [n,0] Angular L2=hA(l + 1) Indicates
angular momentum type of
momentum (scalar) orbital

m magnetic [1,-1 Angular L,=mh Indicates sub-
guantum momentum orbital

(z-component)

ms spin magnetic | % or -1/2 Spin S,=mgh Indicates spin
guantum momentum direction
number (z-component)

s Inherent spin | 1/2 Spin (scalar) S2pate + L¢ | s =1/2 for all
number electrons, no

matter what

Atomic Term Symbols

Conveniently for chemists, an atom’s electronic state depends entirely on its unfilled sub shells.

Because electrons distribute themselves in a symmetric manner, the inner shell electrons end

up canceling out each other’s momenta. For an atom in the configuration 1s°2s°p®, only the

two p-electrons matter. For an atom in the configuration 1s?2s'2p’ , we have to examine the

2s and 2p electrons.

Atoms have quantum numbers that are directly analogous to the electronic quantum numbers.




The total orbital angular momentum quantum number L

One might naively think that you could get the total angular momentum of an atom by simply
adding up the | values of the individual electrons. The problem with this idea is that the
momenta of the various electrons are not necessarily pointing in the same direction. If two
electrons are revolving in the same direction as each other, you would add their | values. If
they were revolving opposite to each other, you would subtract them. If they are revolving at
some off-angle relative to each other, you would partially subtract them.

To figure out all of the possible combinations of | for a pair of electrons, simply add them
together to get the co-aligned case, subtract them to get the opposing case, and then fill in all
the numbers in between to get the off-angle cases. If you prefer to have a formula, you can use
this:

L=[li+ 1], [la+-1], .., |li-13]

Examples: What are the possible L values for 1s°2s%2p??
Both open-shell electrons are | = 1. The possible combinations are 2,1,0

What about configuration [Xe] 6s° 4f' 5d* ?

We have an |=3 and an |=2 electron. 3+2 =5 and 3-2 = 1. The possible combinations are
5,4,3,2,1

The total magnetic quantum number M,

M is the total z-component of all of the relevant electrons’ orbital momentum. Where L told
you how much angular momentum there was, M, tells you which direction it is pointing. Like L,
a given configuration can have several possible values of M, depending on the electrons’
relative orientation. Unlike L, M; is allowed to have negative values (if you think carefully about
what L and M, mean, you will see why this is the case). To list the possible M, values, take the
case where both m, are positive, then take the case where they are both negative, and then fill
in the numbers in between. Here’s a formula: Mi=miz+mp, mp+mp-1, ..., -m;-mp

Example: What are the possible values M, of 40 [Kr] 5s* 4d” ?
Both open-shell electrons are |1=2, so the values are 4,3,2,1,0,-1,-2,-3,-4



The total spin magnetic quantum number M

M is the sum total of the z-components of the electrons’ inherent spin. Do not confuse
it with M|, which is the sum total of the z-component of the orbital angular momentum. ltis
easily computed by finding all of the possible combinations of m;. Since m;for each individual
electron can only be +1/2 or -1/2, this isn’t too complicated.

Ms = ms1 + Mgy, Mgy +Mgy -1, ..., Mg - Mgy

Example: What are the M, values for 1s” 2s* 2p*?
M;=1,0,-1

The total inherent spin quantum number S

The sum total of the spin vectors of all of the electrons is called S. The difference
between S and Mg is subtle but vital for understanding multiplicity. Ms measures the total z-
component of the electrons’ spins. S measures the entire resultant vector.

The values of S are computing in a manner very similar to M. Because S measures the
magnitude of a vector, it cannot ever be negative. S= |s; +5s;]|, |s1+s2-1], ..., | 51 - 52|

Examples: Find S for 1s’
S clearly has to be % since that’s the spin of a single electron and there’s only one
electron to worry about.

Find S for 1522512p1
$=1,0

Find S for 1522522p2

S=1,0 the same as the previous problem. Notice that S is not affected by which
orbitals the electrons are in. S only cares about how many open-shell electrons there are, not
about where they are. This is because S measures an inherent property of the electrons
themselves.

Find S for 1s*2s%2p®

We haven’t done a three electron case yet, but they aren’t hard. Find all the
combinations for a single pair first, and then factor in the third electron. For two electrons, we
already know that the two possible S values are S=1,0. A third electron can either add or
subtract ¥ from these values, so the final Sis 5=3/2, 1, 1/2



The total angular momentum quantum number J

The total orbital angular momentum of an atom (measured in terms of L), and the total
spin angular momentum of an atom (measure in S) combine to form total angular momentum,
a number that is quantized by the number J. L and do not necessarily have to be pointing in the
same direction, so J can range fromL+S to |[L—-S].

Symbol Name Allowed Range

L Total orbital [+ ], [ -12] ]
angular
momentum

M, magnetic [my1 + mpp, -mj1 - m2]
quantum

Ms Spin magnetic [lmsl + mle: | Mgy - mle]
quantum
number

S Inherent spin | [|s1+ s2],]51-52]]
number

M Multiplicity 25+1

J Total angular | [L+S, [L—S]]
momentum

Interlude: Multiplicity

Multiplicity is a simple-sounding concept that defies simple explanations. You know from your
first-year education that a singlet is when the net spin (S) is equal to zero (e.g. all the electrons
are spin paired), and a triplet happens when the net spin is equal to 1 (e.g. two electrons are
pointing in the same direction). They are called “singlet” and “triplet” because there are 3 ways
to combine a pair of electron spins to get S=1, but only one way to get S=0.

If you draw a picture of the possible ways that two electrons can arrange their spins, you get
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something like this:



If you are like me when | first studying multiplicity, you just let out an exasperated sigh. It’s
very obvious that the first and last pairs should have S=1, but the two middle pairs are anti-
parallel. Shouldn’t there be two singlet states and two triplet states? Why is one of the middle
pairs counted as a singlet and the other one as a triplet?fpredicti

The confusion arises from taking the Pauli notation too literally. Like we saw earlier, electrons
don’t’ really align their spins “up” and “down.” They align them at angles. When we call an
electron spin “up,” what we really mean is that it has a positive z-component (e.g. ms = +% ).
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While this picture is an improvement over the simple up-down model, it is still misleading. The
three spin axes of an electron share a Heisenberg Uncertainty Principle. The more you know
about Sy, the less you can know about either S, or S,. The same is true for all other
combinations of x, y and z. Since we have defined S, as a known and fixed value, the values of
Sx and S, must be completely unknown. This causes the x and y orientations of the electrons to
become smeared out across all possible values:
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Putting it all together

Atomic term symbols contain two pieces of information. They tell you the total orbital
angular momentum of the atom (L), and they tell you the multiplicity (M). Lis denoted by a
simple code, similar to the code used to delineate the types of atomic orbitals:

L=0>S
L=1>P
1=2>D
L=3>F

Note that while the notation is similar, L does NOT say anything about what types of orbitals
the electrons are in. A state that has the term symbol P does NOT necessarily have an open p-
shell.

The multiplicity is indicated by appending a number to the upper left of the symbol. A
L=2, M=3 state would be represented by >D. The secret to writing the term symbols for an
atom is to discover what combinations of L and M are possible for that atom.

An atom that only has closed shells will always be 'S.

Examples: What are the term symbols for 1s* ?

Since there is only one electron, this is a simple problem. L=0 and M=1, so the only
possible term symbol is ’S. With only one electron,S=%,s0J=0+%=7%. The final term
symbol is %S,

What are the term symbols for 1s?2s?2p*?
There still only one open shell electron, so L=1, M=1and S =%. We get a term symbol



of the type °P,. which gets split into separate symbols because J = 3/2 and %. The term
symbols are *P3/; and *P1/;

What about 1s°2s'2p*?

Now we have two electrons to worry about. Since |, =0and |, =1, the only possible
combination is L=1. The possible combinations of S are: S=1,0. This means that M=3,1. The
term symbols will be of the form 'p and 3P. For the P state, L=1 and S=0, so J=1. For the
second state, L=1 and S=1, so J=2,1,0. The final term symbols are 'p,and 3p,, 3P, and 3P,

What about [Kr] 5s* 4d” ?

This is a much harder problem. We will need to use a special technique to disentangle
all of the possible combinations of L and M. Let’s start be listing the relevant quantum numbers
for the two electrons:

|1 =2 |2 =2
My = 211101-11-2 miz = 211101-11-2
Ms1 = Y2, -/2 Ms2 = V2, -/2

Let’s combine these numbers to generate the atomic quantum numbers:

L=4,3,2,1,0
M, =4,3,2,1,0,-1,-2,-3,-4
Ms=1,0

We know that there will at least one each of S, P, D, F and G. It isn’t immiediately clear which of
these will be singlets and which will be triplets. To figure this out, we need to systematically
examine the possible microstates. It turns out that there are 45 possible ways to put distribute
two electrons between 5 d orbitals. That’s alot! The easiest way to list the states is to organize
them into a chart:

M




| recommend attacking the chart one row at a time. Ask yourself, how many ways can | arrange the two
electrons to give me M, =47? It turns out there is only one possible combination that does this:

-2 =1 ) 1 LR

This state is has Mg = 0. This means that there is only 1 microstate that corresponds to M, =4 and M =0,
and none that correspond to M, =4 and M, = +/- 1. We represent this on the chart like this:

M
-1 0 1
0 1 0

Now, how many ways are there to get M, = 3?

|
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1
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M
-1 0 1
0 1 0




For M=2, we find the following states:
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M
-1 0 1
0 1 0
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M=1: You should be able to draw the microstates on your own by now. You should find 8
states, four of which are singlet and four of which are triplets.

M
-1 0 1
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M=0 There are only nine possible ways to arrange the electrons to get M;=0

M
-1 0 1
0 1 0
1 2 1
1 3 1
2 4 2
2 5 2

The rest of the chart will be symmetric to the first half, so we don’t need to do any more work:



M

-1 0 1
0 1 0
1 2 1
1 3 1
2 4 2
2 5 2
2 4 2
1 3 1
1 2 1
0 1 0

Now that we have a listing of all of the microstates, we need to figure out how to divide them
up between the term symbols. It turns out that each term symbol can have, at most, one
microstate from each box on the chart. The term symbols always end up claiming a “box” of
microstates, centered on the middle of the chart. This is easier shown than said.

Attacking the chart from the top, | can see that the Mi=4 M; = 0 state clearly belongs to
a 'G symbol. The M;=-4 M,=0 box also clearly belongs to this symbol. If | connect these states
with a “box,” | get this:

M
-1 0 1
0 1 0
1 2 1
1 3 1
2 4 2
2 5 2
2 4 2
1 3 1
1 2 1
0 1 0

The circles stated all belong to the *G state. I’'m going to subtract them out of the chart to
indicate that they aren’t available for other term symbols.

M
-1 0 1

1 1 1
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The next row indicates a L=3 state. Because there are three M; values available, | know
that it is a triplet. The term symbol will be *F and will use up the following microstates:

Mg
-1 0 1
1 1 1
1 2 1
2 3 2
2 4 2
2 3 2
1 2 1
1 1 1
Which reduces the chart down to
0 1 0
1 2 1
1 3 1
1 2 1
0 1 0

The next state will be D:
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-1 1
0 1 0
1 2 1
1 3 1
1 2 1
0 1 0
Leaving us with
M
-1 0 1
1 1 1
1 2 1
1 1 1
Next is a *P state:
M;
-1 0 1
1 1 1
1 2 1
1 1 1
The chart is getting pretty small now:
M;
0
| 1 |

The last remaining microstate comprises the 'S term symbol. The total listing is 'G, °F, 'D, 3P, 's.
Assigning J values, we get G, 3F4 3F3 3F2 p, 3P2 3P1 3Po 'S,

If you can do this problem, you can do almost any atomic term symbol.



Shortcuts

There is a deep symmetry that connects different electronic configurations. It turns out
that a p* configuration has the same term symbols as a p°. Similarly, p® = p*. A similar
relationship can be used to figure out high electron number term symbols for the d and f
orbitals.

Predicting energy levels

Each term symbol represents a discrete energy level. We can place these levels in the correct order by
using these simple rules:

1) High multiplicity values mean low energy
2) If there is a tie, high L values mean low energy
3a) If there is still a tie and the shell is less than half full, then low J means low energy

3b) If the shell is more than half full, then high ] means low energy

These rules reliably predict the ground state. They have only erratic agreement with experiment when
ordering the other levels.

Molecular quantum numbers

The quantum numbers for diatomic molecules are similar from the atomic quantum numbers.
Be cautious, because the rules for finding the possible combinations are different.

The total orbital angular momentum quantum number

For the molecular case, this number is called A instead of L. It follows the same naming
convention as L, except that instead of using capital English letters, it uses capital Greek letters:

A=0->2

A=1->1N
AN=2->A
A=3>0

Unlike L, there is not a general formula for finding the possible combinations of A. You
have to examine the individual microstates. This is easier than it sounds.



The total magnetic quantum number M,

M. works like M, except that there is no formula for finding the combinations.

The total spin magnetic quantum number Mg

Ms works exactly like Ms. Electrons can either point with or against the z-axis, and being
in a molecular orbital versus an atomic orbital doesn’t change this. Ms can range from
Msy + Mg to Ms1 - Ms2

Two new components: parity and reflection

Molecular orbitals are more complex than atomic ones and require more modifiers to
completely define.

Parity (sometimes called “inversion”) tells you if the orbital is symmetric or anti-symmetric
when an inversion operation is performed. Symmetric cases are called “gerade.” Anti-
symmetric cases are called “ungerade.” Some examples:
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This pi orbital is gerade This pi orbital is ungerade

To determine whether or not a given state is g or u, find the parity of each individual open-shell
electron and uses these simple rules:

g+g>g
g+u—u
u+tu-—2g



Example: What is the parity of the state 10,°10,°20,°20,”2m,"2m," ?

Since both open shell electrons are ungerade, the overall parity is g. Helpful hint:
bonding sigma orbitals and anti-bonding pi orbitals are always gerade. Anti-bonding sigmas and
bonding pis are always ungerade. Draw them and see for yourself.

Reflection determines if a given orbital is symmetric or anti-symmetric upon reflection through
a plane that contains both nuclei. The choice of symmetry planes is arbitrary. Aslong as you
pick a plane and stick with it, you will always get the right answer. When an orbital is
symmetric, it is labeled +. When an orbital is anti-symmetric, it is labeled -. To find the overall
reflection of a state, use these rules:

(+)(+) >+
(+)(-) > -
() >+

Reflection only applies to X states! For A >0, there are no reflection labels! If you experiment
with the rules, you will quickly realize why this is the case.

Example: What is the reflection of the state 1crgz1csl122csg22c511221'tulzrtu1 ?

You need to know what the orbitals look like. Draw a picture and then pick a plane. For
this example, I'll use the plane of the page, but the orthogonal plane would have worked just as
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well.

The “vertical” orbital is + The “horizontal” orbital is -

Since one is + and one is -, the overall reflection is -. Try using the orthogonal plane and
convince yourself that you still get the same answer.



All together now

What are the term symbols for 0,?

The molecular orbital diagram for O is:
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Where | chose arbitrary configurations for the last two electrons.

There are two open-shell electrons occupying the anti-bonding r, orbitals. These are
the only electrons that matter. It is easiest to simply draw all of the permutations and figure
out the bounds on A and M, by inspection. If we do this, it is easy to see that A = 2,0 and that
M, =2,0,-2

- -8 ++ ++ ++
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The top row is a A =2 Ms=0 state, so it is A. Both electrons are in the rightmost
orbital. This orbital is gerade, and (g)(g) = g, so the parity label is g. We do not assign
reflection labels to non I states, so the term symbol is ‘A,

After removing the used up microstates, the chart becomes

-1 0 2

This is a A =0 state with three possible spin configurations, so it is >£. We know
that the electrons are in different sub-orbitals (if you can’t see this, try drawing all of the
possible combinations that give A =0). Both of the orbitals are gerade, so the overall
parity is gerade. One of the orbitals will be +, the other will be -. The final answer is

1Ag 32+g
Write the term symbols for O,".
Draw the diagram.

M
H—g_gﬁ
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There are only two possible configurations. It should be easy to see that the
term symbol is °I,.



