Quantitative Chemical Analysis

http://ebooks.bfwpub.com/qchem

An **ALTERNATE version** of the textbook available at a lower cost.

- Includes the **complete textbook** every word, graphic, table, and problem
- You can take notes, highlight and print.
- Convenient access to your textbook from any Internet connection you don't have to carry it everywhere.

Welcome to Analytical Chemistry

The textbook for this course is

Quantitative Chemical Analysis Seventh Edition

by Dan Harris

(©2007, W.H. Freeman & Company)

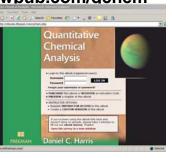
http://ebooks.bfwpub.com/qchem

You have the *choice* in your course resources. The eBook content matches the print book exactly.

http://ebooks.bfwpub.com/achem

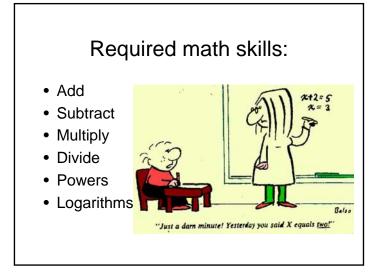
packaged with an eBook access code, you can redeem it at the site:

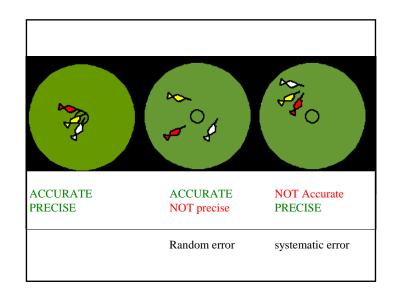
- 1. Click "register."
- 2. Fill out the information and you're ready to go.
- * Be sure to hold on to the access card until you redeem it.


Need support?

1-800-936-6899 Monday-Friday, 9-5 EST techsupport@bfwpub.com

http://ebooks.bfwpub.com/achem
If you would like to


If you would like to **purchase** the access, you can do so at the site:


- 1. Click "purchase."
- 2. Enter your school Zip code
- Choose a user name and password. Fill out the remaining info and you're ready to go.
- * Be sure to remember your username and password

- Orders of magnitude
- Estimation
- Units
- Conversions
- Powers of 10
- Prefixes
- Errors
- Statistics

Estimation and orders of magnitude:

What is the national debt?

Estimation and orders of magnitude:

How many piano tuners are there in Chicago?

Estimation and orders of magnitude:

What is the world population?

Estimation and orders of magnitude:

How many water molecules in 1000 droplets?

Estimation and orders of magnitude:

A cube – 1" on a side \rightarrow (2.6)³ cm³ ~ 18 cc

18 cc = 18 cc (1 g/1 cc) = 18 g

 $18 \text{ g} = 18 \text{ g} (1 \text{ molecule}/ (18 \text{ x } 1.66 \text{x} 10^{-24} \text{ g})) = 6.022 \text{ x } 10^{23} \text{ molecules}$

Prefix	Symbol	Factor	Prefix	Symbol	Facto
yotta	Υ	10 ²⁴	deci	d	10 ⁻¹
zetta	Z	10 ²¹	centi	c	10-2
exa	E	10 ¹⁸	milli	m	10-3
peta	P	10 ¹⁵	micro	μ	10-6
tera	Т	10 ¹²	nano	n	10-9
giga	G	10 ⁹	pico	р	10-12
mega	M	10 ⁶	femto	f	10 ⁻¹⁵
kilo	k	10 ³	atto	a	10-18
hecto	h	10 ²	zepto	z	10-21
deca	da	10¹	yocto	у	10-24
leca	da	10 ¹	yocto	у	10-24

ter (m) ogram (kg) ond (s)	One meter is the distance light travels in a vacuum during \(\frac{1}{299}\)\frac{722}{2124}\) of a second. One kilogram is the mass of the prototype kilogram kept at Sevres, France. One second is the duration of 9 192 631 770 periods of the radiation corresponding to a
	One second is the duration of 9 192 631 770 periods of the radiation corresponding to a
ond (s)	
	certain atomic transition of 133Cs.
pere (A)	One ampere of current produces a force of 2×10^{-7} newtons per meter of length when maintained in two straight, parallel conductors of infinite length and negligible cross section, separated by 1 meter in a vacuum.
vin (K)	Temperature is defined such that the triple point of water (at which solid, liquid, and gaseous water are in equilibrium) is 273.16 K, and the temperature of absolute zero is 0 K.
dela (cd)	Candela is a measure of luminous intensity visible to the human eye.
le (mol)	One mole is the number of particles equal to the number of atoms in exactly 0.012 kg of 12 C (approximately 6.022 141 5 × 10^{23}).
ian (rad)	There are 2π radians in a circle.
radian (sr)	There are 4π steradians in a sphere.
	dela (cd) e (mol) an (rad)

Unit	Symbol	other units	terms of SI base units
hertz	Hz		l/s
newton	N		m • kg/s²
pascal	Pa	N/m ²	kg/(m • s2)
oule	J	N·m	m2 · kg/s2
watt		J/s	m ² · kg/s ³
dmoluoz			s-A
volt		W/A	m2 • kg/(s2 • A)
ohm	Ω	V/A	m2 • kg/(s2 • A2)
farad	F	C/V	s4 • A2/(m2 • kg)
-	ewton ascal oule ratt oulomb olt hm	ewton N ascal Pa sule J att W sulomb C olt V hm Ω	ewton N ascal Pa N/m² sule J N - m att W J/s sulomb C olt V W/A hm Ω V/A

Quantity	Unit	Symbol	SI equivalenta
Volume	liter	L	*10 ⁻³ m ³
	milliliter	mL	*10 ⁻⁶ m ³
Length	angstrom	Å	*10 ⁻¹⁰ m
	inch	in.	*0.025 4 m
Mass	pound	lb	*0.453 592 37 kg
	metric ton		*1 000 kg
Force	dyne	dyn	*10 ⁻⁵ N
Pressure	bar	bar	*10 ⁵ Pa
	atmosphere	atm	*101 325 Pa
	torr (= 1 mm Hg)	Torr	133.322 Pa
	pound/in. ²	psi	6 894.76 Pa
Energy	erg	erg	*10 ⁻⁷ J
	electron volt	eV	1.60217653×10^{-19}
	calorie, thermochemical	cal	*4.184 J
	Calorie (with a capital C)	Cal	*1000 cal = 4.184 kJ
	British thermal unit	Btu	1 055.06 J
Power	horsepower		745.700 W
Temperature	centigrade (= Celsius)	°C	*K - 273.15
	Fahrenheit	°F	*1.8(K - 273.15) + 32
a . An asterisk (*) in	dicates that the conversion is exact (by	definition).	

Chemical concentrations

Molarity = Moles of solute/Liters of Solution (M)

Molality = Moles of solute/Kg of Solvent (m)

Mole Fraction = Moles solute/total number of moles

Mass % = Mass solute/total mass x 100

Volume % = volume solute/total volume x 100

ppm = parts per million *
ppb = parts per billion *

* mass for solutions, volume for gasses

Chemical concentrations

Molarity = Moles of solute/Liters of Solution (M)

Molality = Moles of solute/Kg of $\underline{Solvent}$ (m)

Mole Fraction = Moles solute/total number of moles

Mass % = Mass solute/total mass x 100

Volume % = volume solute/total volume x 100

ppm = parts per million *
ppb = parts per billion *

Chemical concentrations

Molarity = <u>Moles</u> of solute/<u>Liters</u> of <u>Solution</u> (M)

Molality = Moles of solute/Kg of Solvent (m)

Mole Fraction = Moles solute/total number of moles

Mass % = Mass solute/total mass x 100

Volume % = volume solute/total volume x 100

ppm = parts per million *
ppb = parts per billion *

A sample of $NaNO_3$ weighing 8.5 grams is placed in a 500 ml volumetric flask and distilled water was added to the mark on the neck of the flask. Calculate the Molarity of the resulting solution.

Convert the given grams of solute to moles of solute by dividing by the molecular weight of NaNO₃: 1 mole NaNO₃ = Molecular mass of NaNO₃ expressed in grams = 23 + 14 + 3(16) = 85 grams

(8.5 grams NaNO₃) X (1 mole NaNO3 / 85 grams NaNO3) = 0.1 mole NaNO3

Convert given ml of solution to liters by dividing by 1000: 1 liter = 1000 ml

(500 ml) X (1 liter / 1000 ml) = 0.500 liters

Apply the definition for Molarity: Molarity = moles NaNO₃ / volume of the solution in liters

 $M = 0.1 \text{ mole} / .500 \text{ liters} = 0.200 \text{ Molar NaNO}_3$

Chemical concentrations

Molarity = Moles of solute/Liters of Solution (M)

Molality = Moles of solute/Kg of Solvent (m)

Mole Fraction = Moles solute/total number of moles

Mass % = Mass solute/total mass x 100

Volume % = volume solute/total volume x 100

ppm = parts per million *
ppb = parts per billion *

^{*} mass for solutions, volume for gasses

^{*} mass for solutions, volume for gasses

^{*} mass for solutions, volume for gasses

Determine the molality of 3000 grams of solution containing 37.3 grams of Potassium Chloride KCl.

- 1. Convert grams KCl to moles KCl using the molecular weight of KCl
- $(37.3 \text{ grams KCl}) \times (1 \text{ mole KCl} / 74.6 \text{ grams KCl}) = 0.5 \text{ mole KCl}$
- 2. Determine the grams of pure solvent from the given grams of solution and solute

Total grams = 3000 grams = Mass of solute + Mass of solvent Mass of pure solvent = (3000 - 37.3) gram = 2962.7 gram

3. Convert grams of solvent to kilograms (2962.7 grams solvent) X (1 kg / 1000 grams) = 2.9627 kg

Determine the molality of 3000 grams of solution containing 37.3 grams of Potassium Chloride KCl.

4. Apply the definition for molality molality = moles of KCl / kilograms of solvent = 0.5 / 2.9627 = 0.169 m

Chemical concentrations

Molarity = Moles of solute/Liters of Solution (M)

Molality = Moles of solute/Kg of Solvent (m)

Mole Fraction = Moles solute/total number of moles

Mass % = Mass solute/total mass x 100

Volume % = volume solute/total volume x 100

ppm = parts per million *
ppb = parts per billion *

Determine the mole fraction of KCl in 3000 grams of aqueous solution containing 37.3 grams of Potassium Chloride KCl.

- 1. Convert grams KCl to moles KCl using the molecular weight of KCl
- (37.3 grams KCl) X (1 mole KCl) / (74.6 grams KCl) = 0.5 mole KCl
- 2. Determine the grams of pure solvent water from the given grams of solution and solute

Total grams = 3000 grams = Mass of solute + Mass of water Mass of pure solvent = (3000 - 37.3) gram = 2962.7 gram

^{*} mass for solutions, volume for gasses

Determine the mole fraction of KCl in 3000 grams of aqueous solution containing 37.3 grams of Potassium Chloride KCl.

- 3. Convert grams of solvent H₂O to mols
- (2962.7 grams water) X (1 mol / 18.0 grams) = $164.6 \text{ mols H}_2\text{O}$
- 4. Apply the definition for mole fraction mole fraction = moles of KCl / Total mols of KCl and water = 0.5 / (0.5 + 164.6) = 0.5 / 165.1 = 0.00303

```
Determine the mass % of a NaCl solution if 58.5 grams of NaCl was dissolved in 50 ml of water (assume the density of water to be 1 g/ml)
```

Convert ml of water to grams

mass = (50 ml) X (1 g/ml) = 50 grams water

Determine total mass of solution

Mass of solution = mass of solute + mass of solvent = 58.5 + 50 = 108.5 g

Apply the definition of mass percent mass % = 58.5 (100) / 108.5 = 53.9% NaCl

Chemical concentrations

Molarity = Moles of solute/Liters of Solution (M)

Molality = Moles of solute/Kg of Solvent (m)

Mole Fraction = Moles solute/total number of moles

Mass % = Mass solute/ \underline{total} mass x 100

Volume % = volume solute/total volume x 100

ppm = parts per million *
ppb = parts per billion *

* mass for solutions, volume for gasses

Chemical concentrations

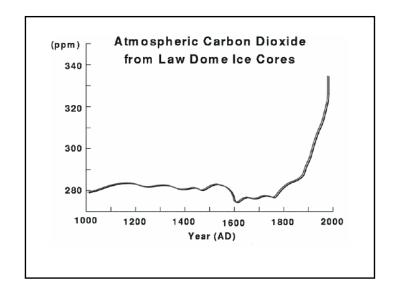
Molarity = Moles of solute/Liters of Solution (M)

Molality = Moles of solute/Kg of Solvent (m)

Mole Fraction = Moles solute/total number of moles

Mass % = Mass solute/total mass x 100

Volume % = volume solute/total volume x 100


ppm = parts per million *
ppb = parts per billion *

* mass for solutions, volume for gasses

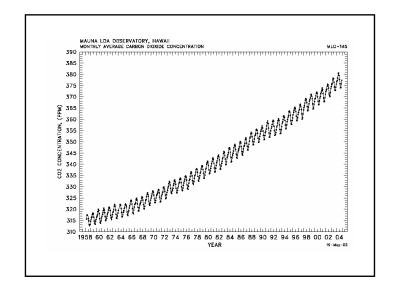
Assuming the density of water to be 1 g/mL we approximate the density of a dilute aqueous solution to be 1 g/mL

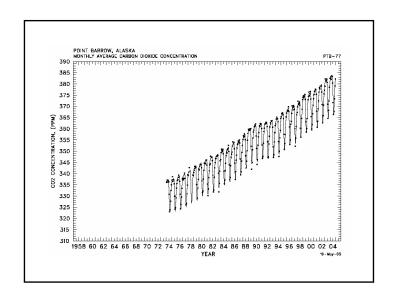
```
\rightarrow 1 ppm = 1 \mug/mL = 1 mg/L
```

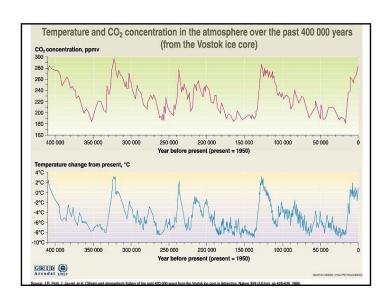
$$\rightarrow$$
 1 ppb = 1 ng/mL = 1 μ g/L

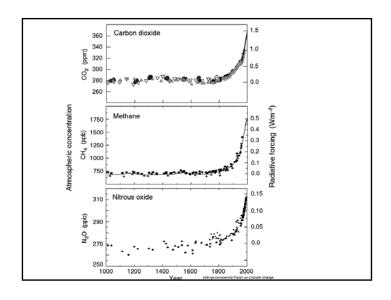
Determine the ppm of a NaCl solution if 58.5 grams of NaCl was dissolved in 50 ml of water (assume the density of water to be 1 g/ml)

Convert ml of water to grams


mass = (50 ml) X (1 g/ml) = 50 grams water


Determine total mass of solution


Mass of solution = mass of solute + mass of solvent = 58.5 + 50 = 108.5 g


Apply the definition of ppm

 $58.5 (10^6) / 108.5 = 5.39 \times 10^5 \text{ ppm NaCl}$

