
http://ebooks.bfwpub.com/qchem

An ALTERNATE version of the textbook available at a lower cost.

- Includes the complete textbook - every word, graphic, table, and problem
- You can take notes, highlight and print.
- Convenient access to your textbook from any Internet connection - you don't have to carry it everywhere.

Welcome to Analytical Chemistry

The textbook for this course is

Quantitative Chemical Analysis
Seventh Edition

by Dan Harris
(©2007, W.H. Freeman \& Company)

http://ebooks.bfwpub.com/qchem

You have the choice in your course resources. The eBook content matches the print book exactly.

http:/lebooks.bfwpub.com/achem If your textbook was packaged with an eBook access code, you can redeem it at the site:

1. Click "register."
2. Fill out the information
and you're ready to go.

* Be sure to hold on to the access card until you redeem it.

Need support?

1-800-936-6899 Monday-Friday, 9-5 EST techsupport@bfwpub.com
http:/lebooks.bfwpub.com/achem If you would like to purchase the access, you can do so at the site:

1. Click "purchase."
2. Enter your school Zip code
3. Choose a user name and password. Fill out the remaining info and you're ready to go.

* Be sure to remember your username and password

Required math skills:

- Add
- Subtract
- Multiply
- Divide
- Powers
- Logarithms

- Orders of magnitude
- Estimation
- Units
- Conversions

What is the national debt?

- Powers of 10
- Prefixes
- Errors
- Statistics

How many piano tuners are there in Chicago?

What is the world population?

Estimation and orders of magnitude:

A cube -1 " on a side $\rightarrow(2.6)^{3} \mathrm{~cm}^{3} \sim 18 \mathrm{cc}$
18 сс $=18$ сс $(1 \mathrm{~g} / 1 \mathrm{cc})=18 \mathrm{~g}$
$18 \mathrm{~g}=18 \mathrm{~g}\left(1 \mathrm{molecule} /\left(18 \times 1.66 \times 10^{-24} \mathrm{~g}\right)\right)=$ 6.022×10^{23} molecules

Prefix	Symbol	Factor	Prefix	Symbol	Factor
yotta	Y	10^{24}	deci	d	10^{-1}
zetta	z	10^{21}	centi	c	10^{-2}
exa	E	10^{18}	milli	m	10^{-3}
peta	P	10^{15}	micro	μ	10^{-6}
tera	T	10^{12}	nano	n	10^{-9}
giga	G	10^{9}	pico	p	10^{-12}
mega	M	10^{6}	femto	f	10^{-15}
kilo	k	10^{3}	atto	a	10^{-18}
hecto	h	10^{2}	zepto	z	10^{-21}
deca	da	10^{1}	yocto	y	10^{-24}

0

| Chemical concentrations |
| :--- | :--- |
| Molarity = Moles of solute/Liters of Solution (M)
 Molality = Moles of solute/Kg of Solvent (m)
 Mole Fraction = Moles solute/total number of moles
 Mass \% = Mass solute/total mass x 100
 Volume \% = volume solute/total volume x 100
 $\mathbf{p p m}=$ parts per million *
 $\mathbf{p p b}=$ parts per billion * |
| * mass for solutions, volume for gasses |

Chemical concentrations
Molarity = Moles of solute/Liters of Solution (M)
Molality = Moles of solute/Kg of Solvent (m)
Mole Fraction = Moles solute/total number of moles
Mass \% = Mass solute/total mass x 100
Volume \% = volume solute/total volume x 100
$\mathbf{p p m}=$ parts per million *
ppb = parts per billion *
* mass for solutions, volume for gasses

A sample of NaNO_{3} weighing 8.5 grams is placed in a 500 ml
volumetric flask and distilled water was added to the mark on the neck of the flask. Calculate the Molarity of the resulting solution.

Convert the given grams of solute to moles of solute by dividing by the molecular weight of $\mathrm{NaNO}_{3}: 1$ mole $\mathrm{NaNO}_{3}=$ Molecular mass of NaNO_{3} expressed in grams $=23+14+3(16)=85$ grams
$\left(8.5\right.$ grams $\left.\mathrm{NaNO}_{3}\right) \mathrm{X}(1$ mole $\mathrm{NaNO} / 85$ grams NaNO 3$)=$ 0.1 mole NaNO3

Convert given ml of solution to liters by dividing by 1000 : 1 liter $=1000 \mathrm{ml}$
$(500 \mathrm{ml}) \mathrm{X}(1$ liter $/ 1000 \mathrm{ml})=0.500$ liters
Apply the definition for Molarity: Molarity = moles $\mathrm{NaNO}_{3} /$ volume of the solution in liters
$\mathrm{M}=0.1$ mole $/ .500$ liters $=\underline{0.200 \mathrm{Molar}^{\mathrm{NaNO}_{3}}}$

* mass for solutions, volume for gasses

* mass for solutions, volume for gasses

Determine the molality of $\mathbf{3 0 0 0}$ grams of solution containing 37.3 grams of Potassium Chloride KCl.

1. Convert grams KCl to moles KCl using the molecular weight of KCl
($\mathbf{3 7 . 3}$ grams $\mathbf{K C l}$) $\mathbf{X}(1$ mole $\mathbf{K C l} / 74.6$ grams $\mathbf{K C l})=$ 0.5 mole KCl
2. Determine the grams of pure solvent from the given grams of solution and solute
Total grams $=\mathbf{3 0 0 0}$ grams $=$ Mass of solute + Mass of solvent
Mass of pure solvent $=(\mathbf{3 0 0 0}-\mathbf{3 7 . 3})$ gram

$$
=2962.7 \text { gram }
$$

3. Convert grams of solvent to kilograms
(2962.7 grams solvent) $\mathbf{X}(\mathbf{1} \mathbf{~ k g} / 1000$ grams $)=2.9627 \mathrm{~kg}$

$$
\begin{aligned}
& \text { Chemical concentrations } \\
& \text { Molarity = Moles of solute/Liters of Solution (M) } \\
& \text { Molality = Moles of solute/Kg of Solvent (m) } \\
& \text { Mole Fraction = Moles solute/total number of moles } \\
& \text { Mass \% = Mass solute/total mass x } 100 \\
& \text { Volume \% = volume solute/total volume x } 100 \\
& \text { ppm = parts per million * } \\
& \text { ppb = parts per billion * }
\end{aligned}
$$

* mass for solutions, volume for gasses

Determine the molality of $\mathbf{3 0 0 0}$ grams of solution containing 37.3 grams of Potassium Chloride KCl.
4. Apply the definition for molality
molality $=$ moles of $\mathrm{KCl} /$ kilograms of solvent $=$
$0.5 / 2.9627=\underline{0.169 \mathrm{~m}}$

Determine the mole fraction of KCl in $\mathbf{3 0 0 0}$ grams of aqueous solution containing 37.3 grams of Potassium Chloride KCl.

1. Convert grams KCl to moles KCl using the molecular weight of KCl
(37.3 grams $\mathbf{K C l}) \mathbf{X}(1$ mole $\mathbf{K C l}) /(74.6$ grams $\mathbf{K C l})=$ 0.5 mole KCl
2. Determine the grams of pure solvent water from the given grams of solution and solute
Total grams $=\mathbf{3 0 0 0}$ grams $=$ Mass of solute + Mass of water Mass of pure solvent $=\mathbf{(3 0 0 0 - 3 7 . 3})$ gram

$$
\text { = } 2962.7 \text { gram }
$$

Determine the mole fraction of KCl in 3000 grams of aqueous solution containing 37.3 grams of Potassium Chloride KCl.
3. Convert grams of solvent $\mathrm{H}_{2} \mathrm{O}$ to mols
$(2962.7$ grams water $) X(1 ~ m o l ~ / ~ 18.0 ~ g r a m s) ~=~$ 164.6 mols $\mathrm{H}_{2} \mathrm{O}$
4. Apply the definition for mole fraction mole fraction = moles of $\mathrm{KCl} /$ Total mols of KCl and water =
$0.5 /(0.5+164.6)=0.5 / 165.1=\underline{0.00303}$
Chemical concentrations
Molarity = Moles of solute/Liters of Solution (M)
Molality = Moles of solute/Kg of Solvent (m)
Mole Fraction = Moles solute/total number of moles
Mass \% = Mass solute/total mass x 100
Volume \% = volume solute/total volume x 100
ppm = parts per million *
ppb = parts per billion *

* mass for solutions, volume for gasses

Determine the mass \% of a $\mathbf{N a C l}$ solution if $\mathbf{5 8 . 5}$ grams of $\mathbf{N a C}$ was dissolved in 50 ml of water (assume the density of water to be $1 \mathrm{~g} / \mathrm{ml}$)

Convert ml of water to grams
mass $=(50 \mathrm{ml}) X(1 \mathrm{~g} / \mathrm{ml})=\mathbf{5 0}$ grams water
Determine total mass of solution
Mass of solution = mass of solute + mass of solvent $=$
$58.5+50=108.5 \mathrm{~g}$
Apply the definition of mass percent mass $\%=$
$58.5(100) / 108.5=\underline{53.9} \% \mathrm{NaCl}$

Chemical concentrations
Molarity = Moles of solute/Liters of Solution (M)
Molality = Moles of solute/Kg of Solvent (m)
Mole Fraction = Moles solute/total number of moles
Mass \% = Mass solute/total mass x 100
Volume \% = volume solute/total volume x 100
ppm = parts per million *
ppb = parts per billion *

* mass for solutions, volume for gasses

Assuming the density of water to be $1 \mathrm{~g} / \mathrm{mL}$ we approximate the density of a dilute aqueous solution to be $1 \mathrm{~g} / \mathrm{mL}$
$\rightarrow 1 \mathrm{ppm}=1 \mu \mathrm{~g} / \mathrm{mL}=1 \mathrm{mg} / \mathrm{L}$
$\rightarrow 1 \mathrm{ppb}=1 \mathrm{ng} / \mathrm{mL}=1 \mu \mathrm{~g} / \mathrm{L}$

Determine the ppm of a NaCl solution if 58.5 grams of NaCl was dissolved in 50 ml of water (assume the density of water to be 1 g / ml)

Convert ml of water to grams
mass $=(50 \mathrm{ml}) X(\mathbf{1} / \mathrm{ml})=\mathbf{5 0}$ grams water

Determine total mass of solution
Mass of solution $=$ mass of solute + mass of solvent $=$ $\mathbf{5 8 . 5}+\mathbf{5 0}=\mathbf{1 0 8 . 5} \mathrm{g}$

Apply the definition of ppm
$58.5\left(10^{6}\right) / 108.5=\underline{5.39 \times 10^{5}} \mathbf{p p m ~ N a C l}$

