Discovery and Optimization of Novel Inhibitors of the Mitochondrial Permeability Transition Pore

<u>Sudeshna Roy^{1,5}</u>, Justina Šileikyte², Marco Schiavone², Benjamin Neuenswander¹, Michael Hedrick³, Thomas Chung³, Jeffrey Aubé^{1,5}, Michael Forte⁴, Paolo Bernardi², Frank Schoenen¹

¹University of Kansas, Lawrence, Kansas, USA, ²University of Padova, Padova, Italy, ³Sanford-Burnham Medical Research Institute, La Jolla, California, USA, ⁴Oregon Health & Science University, Portland, Oregon, USA, ⁵University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

The mitochondrial permeability transition pore (mtPTP) is a Ca²⁺-requiring megachannel that permanently opens under pathological conditions and leads to deregulated release of Ca2+ and mitochondrial dysfunction. For the past couple of decades the mtPTP has been implicitly recognized as a therapeutic target for several deadly diseases such as Alzheimer's disease, muscular dystrophies, myocardial infarction, stroke, and diabetes. Herein we report the results of a high-throughput screening/chemical optimization approach that led to the discovery of two new chemotypes: (a) diarylisoxazole-3-carboxamides and (b) *N*-phenylbenzamides, which are first subnanomolar inhibitors of the mtPTP. The therapeutic potential and *in vivo* efficacy of the most potent analogues were validated in a biologically relevant zebrafish model of collagen VI congenital muscular dystrophies.

