\Box/\Box -Peptides containing pyrrolidine-based \Box -residues as useful tools for neuropeptide Y receptor-subtype selectivity

Thomas Ertl¹, Chiara Cabrele², Armin Buschauer¹, Oliver Reiser¹

Pyrrolidine-based non-natural amino acids have been shown to be valuable building blocks for the design of pharmaceutically interesting peptides and peptidic foldamers. In this work we show the application of the \Box -amino acid (3R,4R)-4-amino-pyrrolidine-3-carboxylic acid (*cis*-APC) in the design and synthesis of novel \Box/\Box analogs of neuropeptide Y (NPY). This is a 36-residue long, C-terminally amidated peptide hormone that is expressed in the brain and in the peripheral nervous system, and, upon binding to four NPY Y_n (n=1,2,4,5) receptors, it regulates food intake, the circadian rhythm and cardiorespiratory parameters. Moreover, the NPY/ Y_n -receptor system is involved in several pathological disorders like obesity, depression, anxiety-related disorders and epilepsy. To control the Y_n -receptor-mediated function of NPY, it is important to develop NPY analogs with Y_n -receptor-subtype selectivity. For this purpose we have modified the NPY fragment 25-36 by introducing *cis*-APC and other cyclic \Box -amino acids at positions 32 and 34. The synthesis of these NPY analogs and the ability of the investigated building blocks to modulate receptor-binding selectivity will be presented.

[1] Leading references: (a) Berlicki, Ł.; Kaske, M.; Gutiérrez-Abad, R.; Bernhardt, G.; Illa, O.; Ortuño, R. M.; Cabrele, C.; Buschauer, A.; Reiser, O. J. Med. Chem. 2013, 56, 8422. (b) Cabrele, C.; Martinek, T. A.; Reiser, O.; Berlicki, Ł. J. Med. Chem. 2014, 57, 9718. (c) Berlicki, L.; Pilsl, L.; Weber, E.; Mandity, I. M.; Cabrele, C.; Martinek, T. A.; Fülöp, F.; Reiser, O. Angew. Chem. Int. Ed. Engl. 2012, 51, 2208.

¹University of Regensburg, Regensburg, Germany, ²University of Salzburg, Salzburg, Austria