Development of Aminooxazoline Xanthene-based β-Amyloid Cleaving Enzyme (BACE1) Inhibitors with Improved Selectivity Towards Cathepsin D (CatD)

Jonathan Low ${ }^{1}$, Michael Bartberger ${ }^{1}$, Jian Jeffery Chen ${ }^{1}$, Alan Cheng ${ }^{2}$, Robert Dunn II ${ }^{1}$, Dean Hickman ${ }^{1}$, Ana Minatti ${ }^{1}$, Hugo Vargas ${ }^{1}$, Paul Wen ${ }^{1}$, Jonathan Werner ${ }^{1}$, Douglas Whittington ${ }^{2}$, Stephen Wood ${ }^{1}$, Ryan White ${ }^{2}$, Yuan Cheng ${ }^{1}$

${ }^{1}$ Amgen Inc., Thousand Oaks, CA, USA, ${ }^{2}$ Amgen Inc., Cambridge, MA, USA
Alzheimer's disease (AD) is a neurodegenerative disorder that currently affects 36 million people worldwide. It therefore represents one of the largest unmet medical needs in neuroscience today. The β-amyloid cleaving enzyme (BACE1) is considered a prime therapeutic target due to its genetically-verified, detrimental role in the initiation and progression of the disease. As part of an ongoing effort at Amgen to develop a diseasemodifying therapy for $A D$, we have previously used the aminooxazoline xanthene (AOX) scaffold to generate potent and orally efficacious BACE1 inhibitors. ${ }^{1}$ While AOX-based BACE1 inhibitors demonstrating robust reduction of CSF and brain A β levels, both in rat and non-human primates, were identified with acceptable cardiovascular safety margins, a retinal pathological finding in advanced rat toxicological studies demanded further investigation. It has been widely postulated that such retinal toxicity might be related to off-target inhibition of Cathepsin D (CatD), a closely related aspartyl protease. ${ }^{2}$ Here we report the development of AOX-based BACE1 inhibitors with improved selectivity towards CatD utilizing a structure- and property-based approach to gain further insight into the observed ocular toxicity.
(1) (a) J. Med. Chem. 2014, 57, 9811-9831. (b) J. Med. Chem. 2014, 57, 9796-9810. (c) ACS Med. Chem. Lett. 2015, 6, 210-215. (d) J. Med. Chem. 2012, 55, 9156-9159. (e) Bioorg. Med. Chem. Lett. 2015, 25, 767-774
(2) Toxicol. Pathol. 2014, 0192623314553804 (published on-line)

