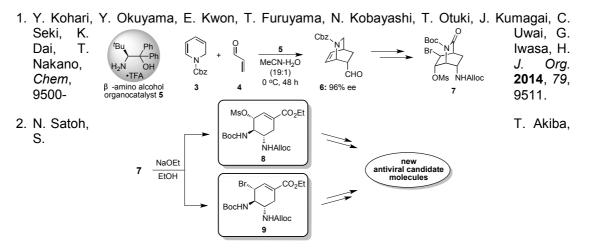
Development of new antiviral candidate molecules using organocatalyzed asymmetric Diels-Alder reaction of 1,2dihydropyridines with dienophiles as a key reaction


<u>Ryohei Takagi¹</u>, Yoshihito Kohari¹, Chigusa Seki¹, Koji Uwai¹, Eunsang Kwon², Yuko Okuyama³, Mitsuhiro Takeshita⁴, Michio Tokiwa⁴, Hiroto Nakano¹

¹Department of Bioengineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan, ²Research and Analytical Center for Giant Molecules, Graduate School of Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan, ³Tohoku Pharmeceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8585, Japan, ⁴Tokiwakai Group, 62 Numajiri Tsuduri-chou Uchigo Iwaki 973-8053, Japan

Asymmetric Diels-Alder (DA) reaction of 1,2-dihydropyridines **1** with dienophiles using an organocatalyst is an important reaction for the construction of chiral isoquinuclidines (2-azabicyclo

[2,2,2]octanes) **2**, can be used as the synthetic intermediates for the synthesis of biological active molecules such as oseltamivir phosphate.

In this presentation, we introduce that simple primary \Box -aminoalcohol **5** acts as an efficient chiral organocatalyst for the enantioselective DA reactions of *N*-Cbz-1,2-dihydropyridine **3** with acrolein **4**. In addition, we also describe the utilization of both the new chiral building blocks **8** and **9** that were obtained from the intermediate **7** for the preparation of new antiviral candidate molecules.

Yokoshima, T. Fukuyama, *Tetrahedron*, **2009**, *65*, 3239-3245.