Synthesis of tetraaryl-1,4-dihydropyrrolo-[3,2-b]pyrroles derivatives using niobium pentachloride

<u>Lucas Michelão Martins</u>, Bruno Henrique Sacoman Torquato da Silva, Luiz Carlos da Silva Filho

Universidade Estadual Paulista Júlio de Mesquita Filho, Bauru, São Paulo, Brazil

Heteropentalenes are aromatic compounds with 10π delocalized electrons in its structure. That characteristic make these compounds potential candidates as sensitizing dyes of organic electronic devices. Thieno[3,2-b]thiophene is a commercial available product that is used as basis for new compounds with the heteropentalene structure. The pyrrolo-[3,2-b]pyrroles derivatives are scarcely studied as sensitizing dyes in organic electronic devices.

Recently, a synthesis route was described for tetraaryl-1,4-dihydropyrrolo-[3,2-b]pyrroles derivatives (**4a-h**) through a multicomponent reaction between 2 moles of aldehydes derivatives, 2 moles of aniline derivatives and 1 mol of butanedione in the presence of acetic acid at 100°C, with low yields (5-34%).

Based on that, and in the objectives of our research group of applying the niobium compounds as catalyst in organic synthesis, we carried out the synthesis of tetraaryl-1,4-dihydropyrrolo-[3,2-b]pyrroles derivatives using niobium pentachloride as catalyst for the pentacomponent reaction among toluidine (1), benzaldehyde derivatives (2a-h), and 2,3-butanedione (3). The reactions proceeded in room temperature and in anhydrous solvent (CH₃CN). We could synthesize the products in a good reaction time (20-90 min) and with very good yields (49-98%). The products were purified by recrystallization and characterized by spectroscopic and spectrometric methods.

Acknowledgments: this work was supported by FAPESP, CAPES, CNPq and CBMM.