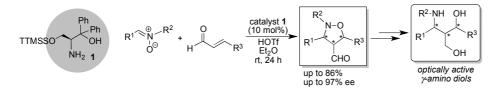

Enantioselective 1,3-dipolar cycloadditions reaction of nitrones with aldehydes promoted by a primary siloxy -amino alcohol organocatalyst


<u>Teppei Otuki¹</u>, Jun Kumagai¹, Yoshihito Kohari², Yuko Okuyama³, Eunsang Kwon⁴, Chigusa Seki¹, Koji Uwai¹, Yasuteru Mawatari¹, Nagao Kobayashi⁵, Tatsuo Iwasa⁶, Michio Tokiwa⁷, Mitsuhiro Takeshita⁷, Hiroto Nakano¹

¹Department of Bioengineering, Graduate School of Engineering, Muroran Institute of Technology, Muroran, Japan, ²Kitami Institute of Technology, Kitami, Japan, ³Tohoku Pharmaceutical University, Sendai, Japan, ⁴Research and Analytical Center for Giant Molecules, Graduate School of Sciences, Tohoku University, Sendai, Japan, ⁵Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan, ⁶Division of Engineering for Composite Functions, Graduate School of Engineering, Muroran Institute of Technology, Muroran, Japan, ⁷Tokiwakai Group, Iwaki, Japan

Organocatalyzed asymmetric 1,3-dipolar (1,3-DP) cycloaddition of nitrones with dipolarophiles¹ is an efficient reaction for the construction of optically active isoxazolidines, and the obtained isoxazolidines are valuable optically active chiral building blocks for the synthesis of various biological compounds.

We found that simple primary TTMSS- \Box -amino alcohol organocatalyst **1**² showed superior catalytic activity in 1,3-DP cycloaddition of nitrones with $\Box \Box$ -unsaturated aldehydes to provide high optically active isoxazolidines in good chemical yields (up to 86%) with excellent diastereoselectivities (up to *endo/exo* = 96/4) and enantioselectivities (up to 97% ee). Furthermore, the obtained optically active isoxazolidines were easily converted to \Box -amino diols having three successive stereogenic centers. This work will be presented and discussed in detail.

1. Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874.

2. (a) Kohari, Y.; Okuyama, Y.; Kwon, E.; Furuyama, T.; Kobayashi, N.; Otuki, T.; Kumagai, J.;

Seki, C.; Uwai, K.; Dai, G.; Iwasa, T.; Nakano, H. *J. Org. Chem.* **2014**, *79*, 9500. (b) Suttibut, C.;

Kohari, Y.; Igarashi, K.; Nakano, H.; Hirama, M.; Seki, C.; Matsuyama, H.; Uwai, K.; Takano,

N.; Okuyama, Y.; Osone, K.; Takeshita, M.; and Kwon, E. *Tetrahedron Lett.* **2011**, *52*, 4745.