KINETICS

In this file I will correct important errors in equations or misleading statements about physics. I will not correct typos in the text, or syntax, or grammatical errors. However, if you have found such errors please let me know. I will collect them just in case that a second edition of the book is issued. Thanks.

Eq. 4.11 is erroneous. The correct result is in WorkBook 3 and it is

$$
\eta(\mathrm{t})=A(0)+\frac{A(0)(B(0)-A(0))}{A(0)-B(0) \exp \{[B(0)-A(0)] k t\}}
$$

- In the heading of Table 5.2, $\left(\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}\right) \times 10^{-4}$ must be replaced with $\left(\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}\right) \times 10^{4}$. After this modification, the table tells us that

$$
\left(\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}\right) \times 10^{4}=1.59
$$

(for the first row of the table). This gives the correct value

$$
\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}=1.59 \times 10^{-4} \text { second }^{-1}
$$

- In Table 5.2, the value of $\mathrm{B}(\mathrm{t})$ for $\mathrm{t}=13,200$ seconds should be $11.55 \mathrm{~mol} /$ liter (not 1.73 $\mathrm{mol} /$ liter). Communicated by Robert Donnelly, Auburn University.

Professor Donnelly has also pointed out that Exercise 5.11 on page 86 is inconsistent with the data given on pages 80-84. The exercise asks you to assume that the data given in Table 5.2 were obtained for $\mathrm{A}(0)=1, \mathrm{~B}(0)=0 \mathrm{~mol} /$ liter or for $\mathrm{A}(0)=3, \mathrm{~B}(0)=0.2$ $\mathrm{mol} /$ liter. Those initial values are impossible in view of the data which tell us that the reaction produced, when it reached equilibrium, $13.28 \mathrm{~mol} /$ liter of B (see the line below Eq. 5.32). Short of hiring a top-notch alchemist, one cannot produce so much B in the reaction

$$
\mathrm{A} \rightleftharpoons \mathrm{~B}
$$

if $\mathrm{A}(0)=1$ or $\mathrm{A}(0)=3$. The problem makes sense only if $\mathrm{A}(0)>\mathrm{B}_{\mathrm{e}}=13.28$.

To solve Exercise 5.11, you must take $\mathrm{A}(0)>13.28 \mathrm{~mol} /$ liter. For example, use $\mathrm{A}(0)=15$ $\mathrm{mol} /$ liter and $\mathrm{B}(0)=0 \mathrm{~mol} /$ liter in one calculation and $\mathrm{A}(0)=18 \mathrm{~mol} /$ liter and $\mathrm{B}(0)=0.2$ $\mathrm{mol} /$ liter in the other.

- Eq. 6.59 should be (coth is the hyperbolic cotangent)

$$
\eta(\mathrm{t})=\frac{2 e_{0}}{\sqrt{\Delta} \operatorname{coth}\left(\frac{t \sqrt{\Delta}}{2}\right)-e_{1}}
$$

The second equation on page 136 (giving the rate of Br evolution for Reaction 5) is missing the square; it should be

$$
\frac{1}{2}\left(\frac{d[\mathrm{Br}]}{d t}\right)_{\mathrm{R} 5}=-k_{5}[\mathrm{Br}]^{2}
$$

This error did not propagate in the rest of the text: Eq. 8.8 uses the correct expression.

Eq. 9.12 should be (sign changes)

$$
C(t)=C(0)+\eta_{1}(t)-\eta_{2}(t)
$$

Eq. 9.15 should be (grouping)

$$
\frac{d \eta_{2}(t)}{d t}=k_{2}\left[C(0)+\eta_{1}(t)-\eta_{2}(t)\right]
$$

