Course syllabus for Chemistry 162B / 262B

Drug Design (Spring 2009)

Class meets:	Mon, Wed, Fri	12:00 – 12:50 PM	Phelps 1444		
Instructor:	Professor Kalju Kahn, Office: PSB-N 2623				
	E-mail: kalju@chem.ucsb.edu		Phone: (805) 893-6157		
	Office Hours: Tue 3:30–3:30 and Thu 3:30-4:30 or by appointment				
	Course website: http://www.chem.ucsb.edu/~kalju/chem162				

Lecture Textbook: Richard B. Silverman, The Organic Chemistry of Drug Design and Drug Action, 2nd edition

The Course: In Chem 162, students learn principles that govern the process of modern drug discovery and development. Students will follow a path similar to that taken by real-life drug developers by learning important elements of the drug design process in a logical order. Some topics that we focus more extensively in 162B are:

- Principles of molecular recognition
 Structure based drug design
- Mechanism of enzymes and enzyme inhibition
 Drug metabolism and prodrugs

Expectations of Students:

- > Attendance and taking good lecture notes is expected. Submitting completed assignments in time is required.
- The textbook provides some necessary background material. Furthermore, students are expected to read modern drug design-related research literature. Required literature will be available on the course website.
- Honesty and academic integrity must be always preserved. While discussing your ideas with others is encouraged outside the classroom, you must answer the assignment questions individually. No supplemental material should be used during an exam.
- Your grade in the course is based on points you collect from the weekly assignments (10 points each), the midterm (40 points), the final exam (50 points), and the written research proposal (50 points). This is a small class in which participating students historically have earned grades between A+ and B-.
- > The course requires that you have a solid understanding of organic chemistry; good background in biochemistry and physical chemistry will be helpful.
- ➢ No student shall give, sell, or otherwise distribute to others or publish any electronically available course materials or recordings made during any course presentation without the written consent of the instructor.

Study tips:

- ➢ I am posting lecture note slides on-line before the class meets so that you can focus on following my talk. The slides are mainly illustrative and you need to follow the lecture in order to fully understand the topics I cover.
- Come in class prepared. Read the relevant textbook material and required reading before the class meets. I like to interact with students during our meetings and you enjoy the lectures more if you can think along.
- Review (or rewrite) your class notes the same day and supplement them with material from the textbook and other resources (optional reading, Internet). Ask for help if something remains unclear.
- This course is not about memorization of names, reactions, or facts. It is about understanding the process, its principles and methods. You should demonstrate good understanding of the material when answering assignment questions and the exam problems. Your creativity and originality are highly important for getting a high score in the final written proposal.

Good luck! — Kalju

Chem162B/262B		Planned schedule for the Winter 2010			
Jan 4 th	M	Overview of the course, review of key concepts from Chem 162A			
Jan 6 th	W	Introduction to enzymes; enzymes as drug targets			
Jan 8 th	F	Enzyme mechanisms			
Jan 11 th	M	Study of enzyme mechanism and kinetics	gs		
Jan 13 th	W	Enzyme inhibition. Reversible inhibitors, Transition state analogs			
Jan 15 th	F	Tutorial: Modeling of chemical reactions and transition state analog			
Jan 18 th	M	Martin Luther King, Jr.'s Birthday	First assignment due		
Jan 20 th	M	Enzyme inhibition. Mechanism-based inactivators			
Jan 22 nd	W	Tutorial: Chemical databases and visualization of macromolecules			
Jan 25 th	M	Enzyme inhibition: Further examples	Second assignment due		
Jan 27 th	W	Molecular recognition: Principles and methods			
Jan 29 th	F	Molecular recognition: Interactions between molecules			
Feb 1 st	M	Molecular recognition: Entropy of binding; hydrophobic effect			
Feb 3 rd	W	Molecular recognition: Optimization strategies			
Feb 5 th	F	Tutorial: Molecular Recognition			
Feb 8 th	M	Structure-based drug design: Principles	Third assignment due nhibitors		
Feb 10 th	W	Structure-based drug design: Modeling protein flexibility			
Feb 12 th	F	Tutorial: Structure-based drug design: Rational design of enzyme i			
Feb 15 th	M	President's day	Fourth assignment due		
Feb 17 th	W	Structure-based drug design: Docking			
Feb 19 th	F	Tutorial: Target structure-based drug design: Docking			
Feb 22 nd	M	Midterm Exam			
Feb 24 th	W	Introduction to pharmacokinetics			
Feb 26 th	F	ADMET as a challenge in drug discovery			
Mar 1 st	M	Drug metabolism: Principles	Fifth assignment due		
Mar 3 rd	W	Drug metabolism: Cytochrome P450 chemistry			
Mar 5 th	F	Drug metabolism: Optimization strategies			
Mar 8 th Mar 10 th Mar 12 th	M W F	Drug toxicity and drug-drug interactions Prodrugs Drug delivery technologies	Sixth assignment due Written proposals due		

Assignments

- (will be posted on Wednesday one week before the due date)
- 1. Transition state analogs as enzyme inhibitors
- 2. Covalent inactivation of enzymes
- 3. Molecular recognition
- 4. Structure-based drug design
- 5. Molecular docking
- 6. Drug metabolism, prodrugs, drug delivery

