Course syllabus for Chemistry 162A / 262A

Drug Design (Winter 2009)

Class meets:	Mon, Wed, Fri	12:00 – 12:50 AM	Phelps 1444	
Instructor:	Professor K	alju Kahn, Office: PSB-N 2623		
	E-mail: <u>kalj</u>	u@chem.ucsb.edu	Phone: (805) 893-6157	
Office Hours:		s: Tue 12:30-1:30 and Thu 12:3	0-1:30 or by appointment	
	Course website: http://www.chem.ucsb.edu/~kalju/chem162			
Teaching Assi	stant: Robert Leve	ert Levenson, Office Chem 1317		

Lecture Textbook: Richard B. Silverman, The Organic Chemistry of Drug Design and Drug Action, 2nd edition

The Course: In Chem 162 students learn principles that govern the process of modern drug discovery and development. Students will follow a path similar to that taken by real-life drug developers by learning important elements of the drug design process in a logical order. Some topics that we focus more extensively in 162A are:

- Target identification and validation
 Chemical libraries and screening
- Receptor mechanisms and receptor targeting
 Ligand-based drug design

Expectations of Students:

- > Attendance and taking good lecture notes is expected. Submitting completed assignments in time is required.
- The textbook provides some necessary background material. Furthermore, students are expected to read modern drug design-related research literature. Required literature will be available on the course website.
- Honesty and academic integrity must be always preserved. While discussing your ideas with others is encouraged outside the classroom, you must answer the assignment questions individually. No supplemental material should be used during an exam.
- Your grade in the course is based on points you collect from the weekly assignments (10 points each), the midterm (40 points), the final exam (50 points), and the written research proposal (50 points). Grading will be based on the curve but you have to meet a certain level to get a grade higher than F.
- ➤ The course requires that you have a solid understanding of basic biology and organic chemistry; good background in biochemistry and physical chemistry will be very helpful.
- ➢ No student shall give, sell, or otherwise distribute to others or publish any electronically available course materials or recordings made during any course presentation without the written consent of the instructor.

Study tips:

- ➤ I am posting lecture note slides on-line before the class meets so that you can focus on following my talk. The slides are mainly illustrative and you need to follow the lecture in order to fully understand the topics I cover.
- Come in class prepared. Read the relevant textbook material and required reading before the class meets. I like to interact with students during our meetings and you enjoy the lectures more if you can think along.
- Review (or rewrite) your class notes the same day and supplement them with material from the textbook and other resources (optional reading, Internet). Ask for help if something remains unclear.
- This course is not about memorization of names, reactions, or facts. It is about understanding the process, its principles and methods. You should demonstrate good understanding of the material when answering assignment questions and the exam problems. Your creativity and originality are highly important for getting a high score in the final written proposal.

Good luck! — Kalju

Chem162/2	262	Schedule for the Winter 2009	
Jan 5 th	М	Overview and history of drug design	
Jan 7 th	W	Rational drug design: overview of approaches	
Jan 9 th	F	Current trends and future of drug design. Diseases.	
Jan 12 th	М	Target Identification and Validation: Principles	
Jan 14 th	W	Target Validation: Pre-genomic methods	
Jan 16 th	F	Target Validation: Post-genomic methods	
Jan 19 th	Μ	Martin Luther King, Jr.'s Birthday	
Jan 20 th	Μ	Target Validation: Bioinformatics	First assignment due
Jan 21 st	W	Tutorial in SGI lab (Chem 1153): Target identification from micro	barray data
Jan 26 th	М	Enzymes as drug targets	
Jan 28 th	W	Receptors as drug targets: Overview of biosignaling	Second assignment due
Jan 30 th	F	Receptors as drug targets: Ion channels	C C
Feb 2 nd	М	Receptors as drug targets: G-protein coupled receptors	
Feb 4 th	W	Experimental characterization of membrane-bound receptors	Third assignment due
Feb 6 th	F	Nuclear hormone receptors	-
Feb 9 th	М	Midterm Exam	
Feb 11 th	W	Chemical libraries and combinatorial chemistry	
Feb 13 th	F	Principles of assay development	
Feb 16 th	Μ	Presidents' day	
Feb 18 th	W	High-throughput screening for lead identification	Fourth assignment due
Feb 20 th	F	General strategies for lead optimization	
Feb 23 rd	М	Ligand-based drug design and optimization	
Feb 25 th	W	Ligand-based drug design and optimization	Fifth assignment due
Feb 27 th	F	Tutorial in SGI lab (Chem 1153): Ligand building and modeling	
Mar 2 nd	М	Fragment-based drug design and optimization	
Mar 4 th	W	QSAR: Overview	Sixth assignment due
Mar 6 th	F	Tutorial: Practical QSAR: tutorial in the SGI lab (Chem 1153)	-
Mar 9 th	М	QSAR: Technical Details	
Mar 11 th	W	Comparative Molecular Field Analysis	
Mar 13 th	F	Open	Written draft proposals due

Assignments

(will be posted on Wednesday one week before the due date)

1. Diseases and targets

.

~ _ ____

- 2. Target validation
- 3. Receptors: general features
- Assay development and library design
 Pharmacophores and molecular similarity
- 6. Molecular properties, ligand-based optimization

