EQUATIONS and CONSTANTS:

\[\mathcal{E} = \mathcal{E}^\circ - \frac{(RT/nF)}{\ln Q} \]

\[\Delta G = \Delta G^\circ + RT \ln Q \]

\[\Delta G = -nF\mathcal{E} \]

\[\mathcal{E} = \mathcal{E}^\circ - \frac{(0.0257/n)}{\ln Q} \text{ at } 25^\circ \text{C} \]

\[\Delta G = \Delta H - T\Delta S \]

\[\Delta G^\circ = -nF \mathcal{E} \]

\[\Delta G = \Delta H^\circ - T\Delta S^\circ \]

\[\Delta G^\circ = -RT \ln K \]

\[\mathcal{E}^\circ = (RT/nF) \ln K \]

\[R = 8.3145 \text{ J mol}^{-1}\text{K}^{-1} \]

\[F = 96,485 \text{ C/mol} \]

1. Indicate the signs of \(\Delta H \) and \(\Delta S \) such that the reaction is spontaneous at all temperatures.

 \[\Delta H \quad \Delta S \]

 a) – –
 b) + –
 c) – +
 d) + +

2. Consider the following reaction:

\[\text{H}^\circ (\text{aq}) + \text{OH}^- (\text{aq}) \rightarrow \text{H}_2\text{O} (\text{l}) \]

\[\Delta H = -56 \text{ kJ} \]

How much heat is released when 100 mL of 0.4 M HCl is mixed with 100 mL of 0.3 M Ba(OH)\(_2\)?

 a) 3.36 kJ
 b) 5.60 kJ
 c) 1.68 kJ
 d) 56.0 kJ
 e) 2.24 kJ

3. What is the oxidation state (number) for S in Na\(_2\)S\(_2\)O\(_3\)?

 a) + 2
 b) – 2
 c) + 4
 d) – 4
 e) none of these

4. In an electrochemical cell, a cobalt electrode is immersed in a Co\(^{2+}\) solution and a lead electrode is immersed in a Pb\(^{2+}\) solution.

\[\text{Co} + \text{Pb}^{2+} \rightarrow \text{Pb} + \text{Co}^{2+} \]

Calculate the chemical potential, \(\mathcal{E} \), if [Co\(^{2+}\)] = 0.001 M and [Pb\(^{2+}\)] = 0.1 M.

\[\text{Pb}^{2+} + 2e^- \rightarrow \text{Pb} (\text{s}) \quad \mathcal{E}^\circ = -0.13 \text{ V} \]

\[\text{Co}^{2+} + 2e^- \rightarrow \text{Co} (\text{s}) \quad \mathcal{E}^\circ = -0.28 \text{ V} \]

 a) 0.15 V
 b) 0.091 V
 c) 0.21 V
 d) 0.27 V
 e) none of these

ANSWERS ARE AT THE BOTTOM
5. Using the above half reactions, indicate the strongest oxidizing agent.
 a) Ni^{2+} b) Ag (s) c) Ag^{+} d) Ni (s) e) Cu^{2+}

6. Given the above half reactions, which of the following species could be reduced by Cu (s)?
 a) Sn^{2+} b) Ag^{+} c) Ag (s) d) Pb^{2+}, Sn^{2+} and Ni^{2+} e) Pb (s)

7. Which substance is the oxidizing agent in the following reaction?
 SiCl_{4} (l) + 2 Mg (s) → 2 MgCl_{2} (s) + Si (s)
 a) SiCl_{4} b) Mg c) MgCl_{2} d) Si (s)

Answers
1. c 2. e 3. a 4. c
5. c 6. b 7. a