1. What is the oxidation state (number) for C in CH₃OH?
 a) +2 b) -2 c) +4 d) -4 e) 0

2. Given the following reaction mechanism,
 \[\text{O}_2 \rightleftharpoons \text{O} + \text{O}_2 \] (fast equilibrium)
 \[\text{O} + \text{O}_3 \rightarrow 2 \text{O}_2 \] (slow)

 Derive the rate law for this mechanism to determine the order of reaction with respect to \(\text{O}_2 \).
 \[\text{rate} = \frac{[\text{O}][\text{O}_3]}{[\text{O}_2]} \]
 \[K_1 = \frac{[\text{O}][\text{O}_3]}{[\text{O}_2]} \]
 \[\text{rate} = k_2 K_1 \frac{[\text{O}_3]^2}{[\text{O}_2]} \]
 a) -1 b) -2 c) 1 d) 2 e) 0

3. Which of the following sets of quantum numbers would NOT be possible for an electron in an atom?
 \(n \) \(l \) \(m \) \(s \)
 a) 1 0 0 1/2
 b) 3 2 -1 -1/2
 c) 3 3 1 1/2

4. Which of the following has the smallest atomic radius?
 a) Al b) S c) Be d) O e) Li

5. What is the electron configuration for O⁺?
 a) 1s²2s²2p⁴ b) 1s²2s²2p³ c) 1s²2s²2p⁵ d) 1s²2s²2p⁶ e) None of these

6. What is the orbital designation for electrons with \(n = 2 \) and \(l = 1 \)?
 a) 1s b) 2p c) 2s d) 3p e) 2d

7. The ground electron configuration for the phosphorous atom is [Ne] 3s²3p³. How many unpaired electrons are there?
 a) 1 b) 2 c) 3 d) 4 e) 0

8. Which of the following has the highest first ionization energy?
 a) Na b) Cl c) Al d) Mg

9. \(\text{He}^+ \) has one electron. If the electron is removed from ground state \(\text{He}^+ \), what electronic transition occurs?
 a) \(n = 1 \) to \(n = 2 \) b) \(n = 2 \) to \(n = \infty \) c) \(n = 0 \) to \(n = 1 \) d) \(n = 1 \) to \(n = \infty \) e) \(n = 2 \) to \(n = 1 \)

10. If a beam of yellow light (\(\lambda = 580 \text{ nm} \)) can eject electrons from a metal surface, will blue light (\(\lambda = 450 \text{ nm} \)) be able to eject electrons from this metal surface?
 a) yes b) no c) Can not be determined from information given.

FORMULAS: \[|\Delta E| = E_{\text{photon}} \]

\[E = h \nu \]

\[E = hc/\lambda \]