Plating Metals

Recommended for Chapter(s): 11

Demo #034

Materials NOT in box

1. Safety goggles

Procedure

- 1. (Prep) Make up 40 mL of 1.0 M FeSO₄ (this solutions does not keep, so it must be made no more than a day prior to using). This can be made by dissolving 11.1 g of ferrous sulfate heptahydrate (FeSO₄·7H₂O) in enough water to make 40 mL of solution.
- 2. (Prep) Pour ~40 mL of the 1.0 M CuSO₄ solution into one of the 100 mL beakers.
- 3. (Prep) Pour ~40 mL of the 1.0 M FeSO₄ solution into the other 100 ml beaker.
- 4. Ask students to predict what will happen when Fe (nail) is put into the beaker containing CuSO₄ and Cu (strip) is put into the beaker containing FeSO₄.
- 5. Put the copper into the beaker containing FeSO₄. No reaction will occur.
- 6. Put the nail (Fe) into the beaker containing CuSO₄. Copper will be plated onto the nail after about 10 sec.

Safety

- 1. Wear safety goggles.
- 2. Copper and iron are heavy metals.

Clean Up

- 1. Put the CuSO₄ back into the CuSO₄ bottle. This solution can be reused.
- 2. Put the $FeSO_4$ into the waste bottle and put on the date.
- 3. Return the materials to the cart in the demonstration library room.

Stockroom Notes

- 1. Sand down the nail so that no rust or copper are on the nail.
- 2. Put the nail back into the demonstration box.
- 3. Replace glassware with clean glassware.
- 4. Take out the waste FeSO₄ and put in a new waste bottle
 - a. The new waste bottle tag should read.
 - i. Faculty Name: Feldwinn
 - ii. Department: Chemistry
 - iii. Phone: x2127
 - iv. Start Date: Leave blank (will fill out when chemicals are put in bottle)

- v. Proper chemical name and concentration: ferrous sulfate 1.0 M
- vi. Physical State: liquid
- 5. DO NOT REMAKE THE FeSO₄ SOLUTION.
- 6. Return items to demonstration tub.
- 7. Return tub to the demonstration library.
 - a. Return goggle to goggle box

Discussion

If students are given the following data they should be able to predict whether the reaction will be spontaneous or not.

$\operatorname{Cu}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Cu}(s)$	$E^{\circ} = 0.34 V$
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	$E^{\circ} = -0.44 V$

Reactions are spontaneous when E°_{rxn} is postive.

Reaction 1 (Step 4)

$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$	$E^{\circ} = -0.34 V$
$\underline{\operatorname{Fe}}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	$E^{\circ} = -0.44 V$
$Cu(s) + Fe^{2+}(aq) \rightarrow Cu^{2+}(aq) + Fe(s)$	E°_{rxn} = -0.78 V

Since the E°_{rxn} is negative, students should know that iron will not plate onto the copper.

Reaction 2 (Step 5)

$\operatorname{Cu}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Cu}(s)$	$E^{\circ} = 0.34 V$
$\underline{Fe(s) \rightarrow Fe}^{2+}(aq) + 2e^{-}$	$E^{\circ} = 0.44 V$
$Cu^{2+}(aq) + Fe(s) \rightarrow Cu(s) + Fe^{2+}(aq)$	$E_{rxn}^{\circ} = 0.78 V$

Since the E°_{rxn} is positive, studnets should know that copper will plate onto iron.

Materials for demo 034

- 1. Bottle for 1.0 M FeSO₄
- 2. 1.0 M CuSO₄
- 3. Two 100 mL beakers
- 4. Copper strip
- 5. Paper Towels
- 6. Waste bottle
- 7. Nails
- 8. Sandpaper