Equilibrium of CrO₄²⁻/Cr₂O₇²⁻

Recommended for Chapter(s): 6

Demo #021

Materials NOT in box

1. Safety goggles.

Procedure

- 1. Pour 50 mL of 1 M K₂CrO₄ into a 250 mL Erlenmeyer flask. The solution will be yellow in color.
 - a. Note: You can also use the used solution that is in the bottle labeled used K₂CrO₄
- 2. Add ~8 mL of 3 M H₂SO₄. The solution should turn orange.
- 3. Add ~8 mL of 6 M NaOH. The solution should turn yellow.
- 4. Repeat the step 2 and 3 if desired.

Safety

1. Wear safety goggles.

Clean Up

- 1. Put the used solution into the used K₂CrO₄ bottle.
- 2. Return the materials to the cart in the demonstration library room.

Stockroom Notes

- 1. Make sure that used K₂CrO₄ is bottle is no more than ½ way full. If the bottle is over ½ way full, pour off the excess solution into inorganic waste located in the hood of the chemistry stockroom.
- 2. Replace glassware with clean glassware.
- 3. If needed refill any materials that have been used up.
- 4. Return items to demonstration tub.
- 5. Return tub to the demonstration library.
 - a. Return the goggles to the goggle box.

Discussion

For this demonstration the following equilibrium is manipulated.

$$2CrO_4^{2-}(aq) + 2H^+(aq) \Rightarrow Cr_2O_7^{2-}(aq) + H_2O(1)$$

Solutions containing primarily the CrO_4^{2-} ion are yellow in color, while solutions containing primarily the $\text{Cr}_2\text{O}_7^{2-}$ ions are orange in color. This demonstration can be used

to demonstrate Le Chatlier's Principle. Originally the solution is yellow (more CrO_4^{2-}) as H^+ ions are added to the solution the equilibrium shifts to the products, resulting in the solution turning orange (more $Cr_2O_7^{2-}$). When NaOH is added to the solution it neutralizes the acid, removing H^+ ions, which in turn shifts the equilibrium to the reactants and the solutions turns yellow (more CrO_4^{2-}) again.

Materials for demo 021

- 1. 1 M K₂CrO₄
 2. 3 M H₂SO₄ with pipette
 3. 6 M NaOH with pipette
 4. 250 mL Erlenmeyer Flask
- 5. Used K₂CrO₄ bottle