Chapter 9: Phenomenon

Phenomenon: Below is data from three different reactions carried out with three different amounts of reactants. All reactions were carried out in expandable/contractible containers at $25^{\circ} \mathrm{C}$. What patterns do you see in the data? You do not need to know what work, heat, internal energy, or enthalpy are to find patterns in the data.

$\begin{gathered} \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \\ \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \end{gathered}$	Starting Amount of C	Starting Amount of O_{2}	Observations of Container	Work	Heat	Internal Energy	Enthalpy
	1.00 mol	1.00 mol	$\begin{gathered} \text { Hot } \\ \text { Same Size } \end{gathered}$	0.0 kJ	-394 kJ	-394 kJ	-394 kJ
	1.00 mol	2.00 mol	$\begin{gathered} \hline \text { Hot } \\ \text { Same Size } \\ \hline \end{gathered}$	0.0 kJ	-394 kJ	-394 kJ	-394 kJ
	2.00 mol	2.00 mol	$\begin{gathered} \text { Hot } \\ \text { Same Size } \end{gathered}$	0.0 kJ	-788 kJ	-788 kJ	-788 kJ
$\begin{aligned} & \mathrm{CO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \quad \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \end{aligned}$	Starting Amount of CO_{2}	Starting Amount of $\mathrm{H}_{2} \mathrm{O}$	Observations of Container	Work	Heat	Internal Energy	Enthalpy
	1.00 mol	1.00 mol	$\begin{aligned} & \text { Cold } \\ & \text { Expanded } \end{aligned}$	-3.7 kJ	485 kJ	481 kJ	485 kJ
	1.00 mol	2.00 mol	Cold Expanded	-7.4 kJ	970 kJ	963 kJ	970 kJ
	2.00 mol	2.00 mol	$\begin{aligned} & \text { Cold } \\ & \text { Expanded } \end{aligned}$	-7.4 kJ	970 kJ	963 kJ	970 kJ
$\begin{gathered} \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \\ \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \end{gathered}$	Starting Amount of N_{2}	Starting Amount of O_{2}	Observations of Container	Work	Heat	Internal Energy	Enthalpy
	1.00 mol	1.00 mol	Cold Contract	1.2 kJ	34 kJ	35 kJ	34 kJ
	2.00 mol	1.00 mol	Cold Contract	1.2 kJ	34 kJ	35 kJ	34 kJ
	2.00 mol	2.00 mol	Cold Contract	2.5 kJ	68 kJ	71 kJ	68 kJ

Chapter 9: Energy, Enthalpy, and Thermochemistry

Chapter 9 Energy, Enthalpy, \&
 Thermochemistry

Big Idea: Heat and work are equivalent ways of changing the energy of a system. The total energy of an isolated system is constant. The change in enthalpy of a reaction indicates whether a reaction is endothermic or exothermic.

Energy Facts

WORLD ENERGY
 CONSUMPTION - 2021

World Consumption

Source of Energy	Percent
Petroleum	31%
Coal	28%
Natural Gas	25%
Renewable	12%
Nuclear	5%

Source of Energy	Percent Change Since 2018	Percent Change Since 1990
Oil	-6.9%	-24.0%
Coal	-0.5%	0.48%
Natural Gas	3.7%	15.2%
Renewables	11.0%	39.8%
Nuclear	4.9%	-23.1%

Energy Focts			
2018			
Country	Energy Consumption (Quadrillion Btu)	Country	Energy Consumption/person (MBłU)
China	147.6	Qatar	704
United States	101.2	Iceland	681
Russia	33.3	Singapore	649
India	31.3	Trinidad and	642
Japan	19.2	Tobago	642
Canada	15.2	United Arad	481
Germany	14.9	Emirates	481
Brazil	13.8	Bahrain	460
Korea, South	12.4	Brunei	425
Iran	11.7	Canada	427
		Kuwait	398
		Luxembourg	316
		United States (\#11)	309

Energy Facts

U.S. energy consumption by source and sector, 2021
quadrillion British thermal units (Btu)

Source of Energy	World 2021	$\%$ US	$\%$ US
Petroleum	31%	36%	37%
Natural Gas	28%	32%	25%
Coal	25%	12%	21%
Renewable	12%	11%	8%
Nuclear	5%	8%	9%

Energy Facts

How do we generate electricity?

Internal Energy

- System: The object of study.
- Surrounding: The region outside the system.
- Internal Energy (E): The capacity to do work or to produce heat.
- Temperature (T): How hot or cold an object is.
- Heat (q): The energy that is transferred as a result of a temperature difference between a system and its surroundings.

Note: If heat enters the system q is positive (endothermic reaction). If heat leaves the system q is negative (exothermic reaction).

- Work (w): The energy expended during the act of moving an object against an opposing force.
Note: If the system expands, w is negative. If the system contracts, w is positive.

Internal Energy

Student Question

Which of these changes results in an increase in the internal energy of the system?
a) The system absorbs heat and does work on the surroundings.
b) The system releases heat and does work on the surroundings.
c) The system absorbs heat and has work done on it by the surroundings.
d) The system releases heat and has work done on it by the surroundings.

Internal Energy

Student Question

Helium gas, at a pressure of 2 Pa , is placed in a container with a movable piston. On the other side of the piston is a vacuum. The He gas is allowed to expand such that the volume of the helium goes from $2 \mathrm{~m}^{3}$ to $4 \mathrm{~m}^{3}$. How much work does the helium gas do?
a) 8 J
b) 4 J
c) 0 J
d) -4 J
e) None of the above

Internal Energy

- Heat Capacity (C): The ratio of heat supplied to the temperature rise produced (units $\frac{J}{{ }^{\mathrm{C}}}$)
- Molar Heat Capacity: The heat capacity per mole of substance (units $\frac{J}{\text { mol.0C }}$)

Note: Many books use C_{m} for molar heat capacity.

- Specific Heat Capacity: The heat capacity per gram of substance (units $\frac{\mathrm{J}}{\mathrm{g} \cdot \mathrm{C}}$)

Note: Many books use C_{S} for specific heat capacity.

Note: If the subscript V is added to any of the heat capacities it is the heat capacity at constant volume. If the subscript P is added to any of the heat capacities it is the heat capacity at constant pressure.

Internal Energy

Molar Heat Capacities at 298 K

Gas	$\mathrm{C}_{\mathrm{V}\left(\frac{1}{\text { motik }}\right)}$	$\mathrm{C}_{\mathrm{P}\left(\frac{1}{\text { motik }}\right)}$	$\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}\left(\frac{1}{\text { mokik }}\right)}$	Substances	C $\left(\frac{1}{g, k}\right)$
$\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$	12.47	20.80	8.33	$\mathrm{H}_{2} \mathrm{O}$ (l)	4.18
H_{2}	20.54	28.86	8.32	$\mathrm{H}_{2} \mathrm{O}(\mathrm{s})$	2.03
N_{2}	20.71	29.03	8.32	$\mathrm{Al}(\mathrm{s})$	0.89
$\mathrm{N}_{2} \mathrm{O}$	30.38	38.70	8.32	$\mathrm{Fe}(\mathrm{s})$	0.45
CO_{2}	28.95	37.27	8.32	$\mathrm{Hg}(\mathrm{l})$	0.14
$\mathrm{C}_{2} \mathrm{H}_{6}$	44.60	52.92	8.32	$\mathrm{C}(\mathrm{s})$	0.71
$q=n C \Delta T$				$q=m C \Delta T$	

Note: The smaller the heat capacity, the faster the transfer of heat.

Internal Energy

C_{V} (Monatomic Ideal Gas)

Know

$$
\Delta E=q+w=\Delta P E+\Delta K E
$$

Potential Energy

Kinetic Energy

Work

Only true for ideal monatomic gases

Heat

Internal Energy

C_{p} (Monatomic Ideal Gas)

Know

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}=\Delta \mathrm{PE}+\Delta \mathrm{KE}
$$

Potential Energy

Kinetic Energy

Work
Only true for ideal monatomic gases

Heat

Internal Energy

- State Function: A property of a substance that is independent of how a substance was prepared.
- Are $\Delta \mathrm{E}, \mathrm{q}$, and w state functions?
- 1 mol of monatomic ideal gas
- Path A
- $1.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 1.0 \mathrm{~atm}, 2.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 2.0 \mathrm{~L}$
- Path B
- $1.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 2.0 \mathrm{~L}$

Internal Energy

Path B (Monatomic Ideal Gas)

 $1.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 2.0 \mathrm{~L}$- Step 1 (Constant Volume)

Heat

- $q=n C_{V} \Delta T$
- $C_{V}=\frac{3}{2} R$
(For monatomic ideal gas)
- $q=n \frac{3}{2} R \Delta T$

Problem: We do not know T

$$
\text { - }(\Delta P) V=n R \Delta T
$$

- $q=\frac{3}{2}(\Delta P) V=\frac{3}{2}\left(P_{f}-P_{i}\right) V$
- $q=\frac{3}{2}(2.0 \mathrm{~atm}-1.0 \mathrm{~atm})(1.0 \mathrm{~L})$
- $q=1.5 \mathrm{~L} \cdot \mathrm{~atm}=150 \mathrm{~J}$

Internal Energy

Path B (Monatomic Ideal Gas)

$1.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 2.0 \mathrm{~L}$

- Step 2 (Constant Pressure)

Heat

- $q=n C_{P} \Delta T$
- $C_{P}=\frac{5}{2} R$

Work

- $w=-P_{e x} \Delta V$
(For monatomic ideal gas)
- $q=n_{2}^{5} R \Delta T$
- $\mathrm{w}=-(2.0 \mathrm{~atm})(2.0 L-1.0 \mathrm{~L})$
- $w=-2.0 \mathrm{~L} \cdot \mathrm{~atm}=-2.0 \times 10^{2} \mathrm{~J}$
Problem: We do not know T
- $\mathrm{w}=-P_{e x}\left(V_{f}-V_{i}\right)$

Internal Energy

- $q=\frac{5}{2} P \Delta V=\frac{5}{2} P\left(V_{f}-V_{i}\right)$
- $q=\frac{5}{2}(2.0 \mathrm{~atm})(2.0 L-1.0 L)^{\circ} \Delta E=5.0 \times 10^{2} J+-2.0 \times 10^{2} J$
- $q=5.0 \mathrm{~L} \cdot \mathrm{~atm}$
- $q=5.0 \times 10^{2} J$

Internal Energy

- Path A $1.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 1.0 \mathrm{~atm}, 2.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 2.0 \mathrm{~L}$
- Path B $1.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 2.0 \mathrm{~L}$

Path B (totals)	Path A (totals)
$q=150 \mathrm{~J}+5.0 \times 10^{2} \mathrm{~J}$	$\mathrm{q}=550 \mathrm{~J}$
$\mathrm{q}=650 \mathrm{~J}$	
a $\mathrm{w}=0.0 \mathrm{~J}+-2.0 \times 10^{2} \mathrm{~J}$ $\mathrm{w}=-2.0 \times 10^{2} \mathrm{~J}$	$w=-1.0 \times 10^{2} \mathrm{~J}$
$\Delta E=150 \mathrm{~J}+3.0 \times 10^{2} \mathrm{~J}$	
$\Delta E=450 \mathrm{~J}$	$\Delta E=450 \mathrm{~J}$

Enthalpy

- Path A (Monatomic ideal gas) $1.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 1.0 \mathrm{~atm}, 2.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 2.0 \mathrm{~L}$
- Step 1: $q=250 \mathrm{~J} \quad \mathrm{w}=-1.0 \times 10^{2} \mathrm{~J} \Delta \mathrm{E}=150 \mathrm{~J}$
- Step 2: $q=3.0 \times 10 \mathrm{~J} w=0.0 \mathrm{~J} \quad \Delta \mathrm{E}=3.0 \times 10^{2} \mathrm{~J}$
- Path B (Monatomic ideal gas)
$1.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 2.0 \mathrm{~L}$
- Step 1: $q=150 \mathrm{~J} \quad \mathrm{w}=0.0 \mathrm{~J} \quad \Delta \mathrm{E}=150 \mathrm{~J}$
- Step 2: $q=5.0 \times 10^{2} \mathrm{~J} w=-2.0 \times 10^{2} \mathrm{~J} \Delta \mathrm{E}=3.0 \times 10^{2} \mathrm{~J}$

These values were calculated in class.

Enthalpy

Path B (Monatomic Ideal Gas)

 $1.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 1.0 \mathrm{~L} \rightarrow 2.0 \mathrm{~atm}, 2.0 \mathrm{~L}$- Step 1 (Constant Volume)
- $\Delta H=\Delta E+\Delta(P V)=\Delta E+V \Delta P$
- $V \Delta P=(1.0 \mathrm{~L})(2.0 \mathrm{~atm}-1.0 \mathrm{~atm})=1.0 \mathrm{~L} \cdot \mathrm{~atm}$
- $V \Delta P=1.0 \mathrm{~L} \cdot \operatorname{atm}\left(\frac{101.325 \mathrm{~J}}{1 \mathrm{~L} \cdot \mathrm{~atm}}\right)=1.0 \times 10^{2} \mathrm{~J}$
- $\Delta H=150 J+1.0 \times 10^{2} J=250 J$
- Step 2 (Constant Pressure)
- $\Delta H=q=5.0 \times 10^{2} J$
- Total ΔH

$$
0 H_{t o t}=250 \mathrm{~J}+5.0 \times 10^{2} \mathrm{~J}=750 \mathrm{~J}
$$

Enthalpy

Heating Curve of $\mathbf{H}_{2} \mathrm{O}$

Heat supplied

- Heat of Fusion ($\Delta \mathbf{H}_{\text {fus }}$): The amount of heat that needs to be supplied to turn a solid into a liquid.
- Heat of Vaporization ($\Delta \mathbf{H}_{\text {vap }}$): The amount of heat that needs to be supplied to turn a liquid into a gas.

Enthalpy

Standard State (${ }^{\circ}$)

- For a gas, the standard state is exactly 1 atm.
- For a substance in solution, the standard state is exactly 1 M .
- For a pure substance in a condensed state (liquid or solid), the standard state is the pure liquid or solid.
- For an element, the standard state is the form in which the element exists (is most stable) under conditions of 1 atm and the temperature of interest.

Note: The temperature of the system is usually noted as a subscript. If no temperature is stated, assume $25^{\circ} \mathrm{C}$.

Note: Only the change in enthalpy is important, therefore, the standard state of elements are set to 0 .

Enthalpy

Standard Enthalpy of formation $\left(\Delta H_{f}{ }^{\circ}\right)$:

- The standard reaction enthalpy per mole of compound for the compound's synthesis from its elements in their most stable form at 1 atm and the specified temperature.

Note: The reaction must be written such that only 1 mole of product forms.

Enthalpy

Student Question

For which reaction is $\Delta H_{r x n}^{\circ}=\Delta H_{f}^{\circ}$?

$$
\text { a) } 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

b) 2 C (graphite) $+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$
c) C (diamond) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
d) $\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$
e) None of the above

Enthalpy

Standard Enthalpy of Combustion ($\Delta \boldsymbol{H}_{C}^{\circ}$):

- The change of enthalpy per mole of substance when it burns (reacts with oxygen) completely under standard conditions.

Note: The reaction is written such that 1 mole of substance combusts.

Note: When carbon is in the reactants, CO_{2} forms, and when H is in the reactants, $\mathrm{H}_{2} \mathrm{O}$ forms. For standard enthalpies of combustion water is always assumed to be in the liquid phase.

```
Example:
C}\mp@subsup{\textrm{C}}{8}{
```


Hess's Law

Hess's Law:

- A reaction's enthalpy is the sum of the enthalpies of any sequence of reactions (at the same temperature and pressure) into which the overall reaction can be divided.
- Things to remember
- If you add reactions together, add ΔH 's.
- If you flip a reaction, flip the sign of ΔH.
- If you multiply a reaction by a constant, multiply ΔH by the same constant.

Hess's Law

1. $\mathrm{CCl}_{4}(\mathrm{~g})+4 \mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{Cl}_{2}(\mathrm{~g})$ $\Delta \mathrm{H}_{1}=397.0 \mathrm{~kJ}$
2. $1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{g})$ $\Delta H_{2}=-92.3 \mathrm{~kJ}$
3. $\mathrm{C}($ graphite $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$

$$
\Delta H_{3}=-74.81 \mathrm{~kJ}
$$

Calculate the standard enthalpy of formation of $\mathrm{CCl}_{4}(\mathrm{~g})$ using the thermochemical equations.

Hess's Law

- Given
$\mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{H}_{2}(g)+\mathrm{C}($ graphite $)+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaHCO}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}_{f}^{\circ}\left(\mathrm{NaHCO}_{3}\right)$
$2 \mathrm{Na}(\mathrm{s})+\mathrm{C}($ graphite $)+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$
$\Delta H_{f}^{\circ}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$
C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$ $\Delta H_{f}^{\circ}\left(\mathrm{CO}_{2}\right)$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- What is $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ of
$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{C}($ graphite $)+3 \mathrm{O}_{2}(\mathrm{~g})-2 \Delta \mathrm{H}_{f}^{\circ}\left(\mathrm{NaHCO}_{3}\right)$
$2 \mathrm{Na}(\mathrm{s})+\mathrm{C}($ graphite $)+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}_{f}^{\circ}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$
C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$ $\Delta H_{f}^{\circ}\left(\mathrm{CO}_{2}\right)$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$
$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\Delta H_{r x n}^{\circ}=\Delta H_{f}^{\circ}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)+\Delta H_{f}^{\circ}\left(\mathrm{CO}_{2}\right)+\Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)-2 \Delta H_{f}^{\circ}\left(\mathrm{NaHCO}_{3}\right)
$$

$$
\Delta H_{r x n}^{\circ}=\sum \Delta H_{f}^{\circ}(\text { products })-\sum \Delta H_{f}^{\circ}(\text { reactants })
$$

Thermodynamic Dała at 298 K

Substance	$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\frac{k J}{m o l}\right)$	$\Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\frac{k J}{\mathrm{~mol}}\right)$	$\Delta \mathrm{S}^{\circ}\left(\frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}\right)$
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	52	68	219
$\mathrm{CH}_{4}(\mathrm{~g})$	-75	-51	186
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	-394	214
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	-84.7	-32.9	229.5
$\mathrm{O}(\mathrm{g})$	-110.5	-137	198
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{l})$	-484	-389	160.
$\mathrm{CH}_{3} \mathrm{OH}^{(\mathrm{g})}$	-201	-163	240.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{l})$	-278	-175	161
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})$	-1275	-911	212
$\mathrm{HCl}_{(\mathrm{g})}$	-92	-95	187
$\mathrm{H}_{2}(\mathrm{~g})$	0	0	131
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-286	-237	70
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-242	-229	189
$\mathrm{Fe}(\mathrm{s})$	0	0	27
$\mathrm{Fe} \mathrm{O}_{2}(\mathrm{O})$	-826	-740.	90.

Thermodynamic Dała at 298 K

Substance	$\Delta H_{f}^{\circ}\left(\frac{k J}{m o l}\right)$	$\Delta G_{f}^{\circ}\left(\frac{k J}{m o l}\right)$	$\Delta S^{\circ}\left(\frac{J}{\text { mol } \cdot K}\right)$
$\mathrm{N}_{2}(\mathrm{~g})$	0	0	192
$\mathrm{NO}_{2}(\mathrm{~g})$	34	52	240.
$\mathrm{NO}^{(\mathrm{g})}$	90.	87	211
$\mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	10.	98	304
$\mathrm{NH}_{3}(\mathrm{~g})$	-46	-17	193
$\mathrm{HNO}_{3}(\mathrm{l})$	-174	-81	156
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	-314	-203	96
$\mathrm{O}_{2}(\mathrm{~g})$	0	0	205
$\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$	-2984	-2698	229
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~s})$	-1279	-1119	110
$\mathrm{~S}_{\text {thombic }}(\mathrm{s})$	0	0	32
$\mathrm{H}_{2} \mathrm{~S}^{(\mathrm{g})}$	-21	-34	206
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	-300	248
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	-371	257

* Other $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ can be found in appendix 4 in the back of your book.

Hess's Law

Student Question

Calculate $\Delta H_{r x n}^{\circ}(\mathrm{kJ})$ for the following reaction from the listed standard enthalpies of formation:
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\begin{aligned}
& \text { a) }-862 \mathrm{~kJ} \\
& \text { b) }-908 \mathrm{~kJ} \\
& \text { c) }-1,276 \mathrm{~kJ} \\
& \text { d) Not enough information } \\
& \text { e) None of the above }
\end{aligned}
$$

Substance	$\Delta H^{\circ}\left(\frac{k j}{m o l}\right)$
$\mathrm{NH}_{3}(\mathrm{~g})$	-46
$\mathrm{NO}(\mathrm{g})$	90.
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-242

Calorimetry

Constant Volume
Calorimetry
(Bomb)

Used to find $\Delta \mathrm{E}_{\mathrm{com}}$

- No matter is exchanged
- No heat is exchanged

Constant Pressure Calorimetry (Coffee Cup)

Used to find $\Delta \mathrm{H}\left(\Delta \mathrm{H}_{\text {fus }}\right.$ and $\Delta \mathrm{H}_{\mathrm{rxn}}$) and C

- No heat is exchanged

Calorimetry

- In a constant pressure calorimeter 200. g of ice (T_{i} (ice) $=0.0^{\circ} \mathrm{C}$) is combine with 440. g of water $\left(T_{i}(\right.$ water $\left.)=80.0^{\circ} \mathrm{C}\right)$. The final temperature of the system is $30.1^{\circ} \mathrm{C}$. What is $\Delta \mathrm{H}_{\text {fus }}$ of water in $\frac{\mathrm{kJ}}{\mathrm{mol}}$? $C_{H_{2} O(l)}=4.18 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}$

Calorimetry

- 100. mL of $0.500 \mathrm{M} \mathrm{HCl}(0.0500 \mathrm{~mol} \mathrm{HCl})$ was mixed with 75.0 mL of $0.500 \mathrm{M} \mathrm{NaOH}(0.0375 \mathrm{~mol}$ NaOH) in a constant-pressure calorimeter of negligible heat capacity. The initial temperature of the HCl and NaOH solution was the same, $22.50^{\circ} \mathrm{C}$, and the final temperature of the mixed solution was $25.86^{\circ} \mathrm{C}$. Calculate the heat change for the neutralization reaction on a molar basis.
- Assume the density and specific heat of the solution are the same as for water ($1.00 \frac{g}{m L}$ and $4.184 \frac{\mathrm{~J}}{g^{\circ} \mathrm{cC}^{\prime}}$, respectively)

H_{2} Fuel

Energy Released from Different Fuel Sources

- Natural Gas
$\mathrm{CH}_{4}(\mathrm{I})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$51 \frac{\mathrm{~kJ}}{\mathrm{~g}}$
- Coal
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
17 - $33 \frac{k \mathrm{l}}{\mathrm{g}}$ Depending on impurities
- Gasoline
$\mathrm{C}_{x} \mathrm{H}_{y}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ unbalanced $48 \frac{\mathrm{kj}}{\mathrm{g}}$
- Hydrogen

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& 141 \frac{k J}{g}
\end{aligned}
$$

H_{2} Fuel

Although there is an abundance of hydrogen containing compounds on earth, very little is free hydrogen.
Where do we get H_{2} from?

- Natural Gas:
$-\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow{1000^{\circ} \mathrm{C}} 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
Problem: Uses fossil fuels, need heat (energy), more economical to burn the CH_{4}.
- Electrolysis of Water:
- If a current is passed through $\mathrm{H}_{2} \mathrm{O}$ the water breaks down into its elements.

Problem: The price of electricity is too high to make this competitive as a fuel. Most electricity is generated from fossil fuels.

H_{2} Fuel

- Thermal Decomposition:
- $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \quad\left(\mathrm{~T}=3000^{\circ} \mathrm{C} \sim 1 / 2 \mathrm{H}_{2} \mathrm{O}\right.$ dissociates)

$$
\begin{array}{ll}
2 \mathrm{HI} \rightarrow \mathrm{I}_{2}+\mathrm{H}_{2} & \left(435^{\circ} \mathrm{C}\right) \\
2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}+\mathrm{I}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} & \left(90^{\circ} \mathrm{C}\right) \\
\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2} & \left(825^{\circ} \mathrm{C}\right) \\
\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} &
\end{array}
$$

Problem: Still needs very high temperatures

- Biological Hydrogen Production:
- If certain algae are deprived of sulfur they will switch from producing O_{2} during photosynthesis to H_{2}.

Problem: Currently the yields are to small to be a viable commercial option.

H_{2} Fuel

- Other Problems:
- How to transport H_{2} ?
- H_{2} decomposes on metal surfaces
- H atoms are so small they can migrate into metal weakening it.

Take Away from Chapter 9

- Big Idea: Heat and work are equivalent ways of changing the energy of a system. The total energy of an isolated system is constant. The change in enthalpy of a reaction indicates whether a reaction is endothermic or exothermic.
- Energy Facts
- Internal Energy
- Know the $1^{\text {st }}$ law of thermodynamics and its implications (1)
- The energy of the universe is constant
- Be able to calculate internal energy (E) (24\&25)
- $\Delta E=q+w=\Delta K E+\Delta P E$
- Be able to calculate work (w) $(10,20 \& 103)$
- $w=-P_{e x} \Delta V$
- Be able to calculate heat (q) (11)
- $q=C \Delta T$

Take Away from Chapter 9

- Enthalpy

- Be able to calculate change in enthalpy ($\Delta \mathrm{H}$) (37,38,39,42\&125)
- $\Delta H=\Delta E+\Delta(P V)$
- $\Delta H=q$ (At constant pressure)
- Know implications of sign of $\Delta H(16,32)$
- ΔH is -, exothermic reaction
- ΔH is + , endothermic reaction
- Be able to draw heating curves
- Know the implications/meaning of $\Delta H_{f u s}$ and $\Delta H_{v a p}$
- Be able to draw reaction coordinates diagrams
- Know how to use change in enthalpy as a conversion factor (35,36\&85)
- Hess's Law
- Know how to get $\Delta H_{r x n}^{\circ}$ from other known $\Delta H_{r x n}^{\circ}$ (66,67,68,69\&70)
- Know how to get $\Delta H_{r x n}^{\circ}$ from $\Delta H_{f}^{\circ}(71,76,77,81,82,88 \& 107)$
- $\Delta H_{r x n}^{\circ}=\sum \Delta H_{f}^{\circ}($ prod $)-\sum \Delta H_{f}^{\circ}($ reac $)$

Take Away from Chapter 9

- Calorimetry

- Understand the differences/limitations between constant volume and constant pressure calorimetry (43)
- Be able to solve bomb calorimeter (constant volume) problems $(57,58)$

$$
\text { - } \Delta E_{\text {com }}=-C_{\text {cal }} \Delta T
$$

- Be able to solve coffee cup calorimeter (constant pressure) problems
- Solve for C of non soluble substance $(44,46 \& 48)$
- $q_{\mathrm{H}_{2} \mathrm{O}}=-q_{\text {substance }}$ (if needed add heat $q_{\text {cal }}$ to $q_{\mathrm{H}_{2} \mathrm{O}}$)
- $m_{\mathrm{H}_{2} \mathrm{O}} C_{\mathrm{H}_{2} \mathrm{O}} \Delta T_{\mathrm{H}_{2} \mathrm{O}}=-m_{\text {sub }} C_{\text {sub }} \Delta T_{\text {sub }}$
- Solve for $\Delta H_{\text {fus }}$
- $q_{\text {solid }}=-q_{\text {liquid }}$ (if needed add heat $q_{\text {cal }}$ to $q_{\text {liquid }}$)
- $q_{s\left(T_{i_{s}} \rightarrow T_{m_{s}}\right)}+q_{\text {fus }}+q_{l(\text { that was })\left(T_{m_{s}} \rightarrow T_{f}\right)}=-q_{l}$
- $m_{s} C_{s}\left(T_{m_{s}}-T_{i_{s}}\right)+n_{s} \Delta H_{f u s}+m_{s} C_{l}\left(T_{f}-T_{m_{s}}\right)=-m_{l} C_{l}\left(T_{f}-T_{i_{l}}\right)$

Take Away from Chapter 9

- Calorimetry (Continued)
- Be able to solve coffee cup calorimeter problems
- Solve for $\Delta H_{\text {rxn }}(51,54,55 \& 56)$
- $\Delta H_{r x n}=-q_{\text {solution }}$ (if needed add heat $q_{\text {cal }}$ to $q_{\text {solution }}$)
- $\Delta H_{r x n}=-m_{\text {solution }} C_{H_{2} O} \Delta T_{\text {solution }}$ (Most times need to divide by number of moles. Be careful many of these are limiting reagent problems.)
- \mathbf{H}_{2} Fuel

