4 Photodissociation in the gas phase

Hiroyasu Sato*

University of the Air, Mi’e Study Center, 1234 Kozu-beta, Isshinden Tsu 514-0061, Japan. E-mail: satlaser@ziv.ne.jp; Fax: 81 59 225 8078; Tel: 81 59 225 8078

Photodissociation dynamics investigations published in 2003 have been reviewed. Some of the highlights are the measurement of dissociation rate of benzene, the manifestation of ring isomerization prior to photodissociation, the discovery of conformation-specific dissociation dynamics, and the studies on halogen-containing compounds in relation to the ozone-deficit problem, to name a few.

1 Scope

This review addresses recent advances in the title field in 2003. Among other methods, imaging techniques including multimass imaging, Rydberg (H) atom photofragment translational spectroscopy, femtosecond pump–probe photoelectron spectroscopy, and time-resolved Fourier-transform IR emission spectroscopy, have been widely applied.

Quite naturally, the progress made in 2003 stands on the basis of a wealth of achievements which have been done before. A very brief introduction on the motives of research and the methodology used is presented in the following two sections. Space limitation does not allow detailed interpretation. Readers are referred to the preceding review by the author¹ and to outstanding books.²–⁴

2 Motives of research and information sought

Photodissociation dynamics concerns the mechanisms of photodissociation reactions investigated in atomistic detail, tracing the time evolution of every microscopic step, as far as possible. The main motive of such research is to clarify the true nature of the chemical reactions. The photodissociation reaction “photoexcited molecules → photofragments” corresponds to the latter half of the bimolecular chemical reaction “reactant(s) → transition state → product(s)”, where the photoexcited molecules correspond to the transition state.

The information is usually sought for the entity of product(s) and intermediate(s), partition of the excess energy (“available energy”) $E_{\text{avl}} = h\nu - D$, where D is the bond dissociation energy, among many degrees of freedom, translational and internal
(electronic, vibrational and rotational), of the fragments, and their angular distributions. The fractions of available energy among these degrees of freedom, denoted \(f_T, f_{\text{INT}} (f_{\text{el}}, f_V, f_R) \), respectively (total = 1), are denoted energy disposal. When the vibrational or rotational state distribution can be described by Boltzmann distributions, vibrational \((T_v) \) or rotational temperature \((T_R) \) is used to describe the distribution.

Vector correlations among many directional properties, such as transition moments \((\mu) \), recoil velocity \((V) \) and rotational angular momentum \((J) \) of the fragments, are also studied. The anisotropy parameter \((\beta) \) refers to the angular distributions of recoiling fragments in relation to the polarization vector of the dissociating laser light.

3 Methodology

A brief list of typical methods in our arsenal is given below. This is partly for the description of the abbreviated terms. Lasers (mainly pulsed), are used both to initiate the reactions and to probe the reaction products. Ultraviolet (UV) lasers, such as excimer lasers, the third or fourth harmonics of solid lasers (e.g. Nd:YAG or titania-sapphire), and the second harmonics of dye lasers, are necessary to break chemical bonds in the one-photon process, since the dissociation energy \((D) \) of typical bonds lies in the UV region. Femtosecond (fs) lasers are very helpful in following the course of reactions in the real time.

Synchrotron radiation (SR) is used in the vacuum ultraviolet (VUV) region. Infrared (IR) lasers are used in some cases. They are mostly of difference-frequency generation or optical parametric oscillator (OPO) type. Free electron lasers (FELs) are a convenient source of tunable IR light.

Laser-induced fluorescence (LIF), photoionization (PI), and resonance-enhanced multiphoton ionization (REMPI) are used to probe nascent vibrational–rotational state distributions of photofragment(s). In photofragment translational spectroscopy (PTS), time of flight (TOF) of photofragments is used to determine their translational energy distributions and provide information on energy disposal. When photo-products are formed in spin multiplet states such as iodine atoms in the ground state \((I, j \approx 3/2) \) and spin-excited state \((I^*, j \approx 1/2) \), or in the lambda doublet states, their distributions provide further aspects of product distribution.

The ion imaging technique is a combination of a molecular beam, MPI, and detection of ions on a two-dimensional detector. MPI detection of hydrogen atom \((H) \) fragments using the high Rydberg excited levels of \(H \) atoms as the resonance intermediate states, denoted \(H \) (Rydberg) atom photofragment translational spectroscopy, has been conveniently used due to its high resolution. Vibrationally mediated photodissociation (VMP) is a double-resonance technique, in which the molecules are first excited to some of the vibration–rotational excited states corresponding to their fundamental bands or overtones/combination bands, and subsequently photodissociated by a second (UV) laser photon.

Photofragment yield (PFY) spectra are action spectra for particular photoproduct(s), and photofragment emission yield spectra (PHOFREY) are for a particular excited state of the photoproducts.
Only one of the new techniques (multimass spectroscopy developed by Ni and Y. T. Lee) is explained below, according to the paper by Tsai et al.\(^5\) (see Fig. 1). The apparatus consists of a molecular beam, a photolysis laser beam, a VUV probe laser beam, a mass spectrometer, and a two-dimensional ion detector. The molecular beam, photolysis laser beam, and VUV laser beam are perpendicular each other. The crossing point of the photolysis laser beam with the molecular beam and that of the VUV laser beam with the molecular beam are not the same; the former is several centimeters upstream relative to the latter.

Molecules in the molecular beam are photodissociated by a photolysis laser beam. The dissociation products expand into a large sphere on their flight to the ionization region, and then ionized by a VUV laser pulse. The distance and time delay between the photolysis laser pulse and the VUV laser pulse are set such that the time delay matches the arrival of the undissociated molecules. This time delay ensures that the VUV laser beam passes through the center of the fragment sphere, and the velocity distribution of the fragments is measured in the center of mass frame.

A pulsed electric field extracts the ions into a mass spectrometer. The entrance of the mass spectrometer has a long slit parallel to the VUV laser beam.

The mass spectrometer is basically a radial cylindrical energy analyzer. Since the VUV laser beam passes through the center of the fragment sphere, fragments ionized by the VUV laser have recoil velocity along in the direction of the VUV laser beam axis. At the exit port of the energy analyzer, a two-dimensional ion detector is used to detect ion position and intensity distributions. In the detector, one direction is the recoil velocity axis (\(X\) axis in Fig. 1) and the other is the mass axis (\(Y\) axis in Fig. 1).
4 Saturated hydrocarbons

A remarkable progress has been made in the photodissociation studies of small saturated hydrocarbon molecules, by the use of synchrotron radiation (SR) as a light source, along with highly sensitive detection methods of light fragments, such as H and D atoms.

Alkanes

Wu et al.6 photodissociated propane (C\textsubscript{3}H\textsubscript{8}) at 157 nm. Photofragment translational spectroscopy (PTS) indicated contributions of three channels, atomic hydrogen (H) elimination, molecular hydrogen (H\textsubscript{2}) elimination, and methyl radical (CH\textsubscript{3}) elimination, with branching ratios of 1, 2.1 and 1.5. The site effects on the H and H\textsubscript{2} elimination was quantified, using four isotopomers CH\textsubscript{3}CD\textsubscript{2}CH\textsubscript{3}, CD\textsubscript{3}CH\textsubscript{2}CD\textsubscript{3}, CH\textsubscript{2}DCH\textsubscript{2}CH\textsubscript{3}D and CD\textsubscript{3}CD\textsubscript{2}CD\textsubscript{3}. The yield of the H elimination from the two terminal CH\textsubscript{3} groups was larger than that from the internal CH\textsubscript{2} group. As for the H\textsubscript{2} elimination sites, internal (2,2-) was dominant, vicinal (1,2-) was less significant, and terminal (1,1- and 1,3-) was minor.

Cycloalkanes

Photodissociation dynamics of cycloalkanes at 157 nm was investigated by Y. T. Lee and Yang’s group.7 Time of flight (TOF) spectra of photofragments from cycloalkanes at \textit{m/z} = 1 (H) and 2 (H\textsubscript{2}) were measured. The H\textsubscript{2} elimination from cyclopropane and cyclopentane showed kinetic energy distributions quite different from those of n-alkanes. The relative branching ratios for the H and H\textsubscript{2} elimination channels were also determined. The H elimination process was clearly more important for the photodissociation of smaller cyclic alkanes. Dynamics of the photodissociation of cycloalkanes was strongly related to the flexibility and the ring strain of cycloalkanes. For \textit{cyclo-C\textsubscript{3}H\textsubscript{6}} at 157 nm, these authors used a new apparatus based on the VUV ionization by SR. Observed channels were C\textsubscript{3}H\textsubscript{5} + H, C\textsubscript{3}H\textsubscript{4} + H\textsubscript{2}/2H, C\textsubscript{2}H\textsubscript{4} + CH\textsubscript{2}, and C\textsubscript{2}H\textsubscript{3} + CH\textsubscript{3}, with a branching ratio 0.14, 0.01, 0.68 and 0.17. Among these products, H atom products were possibly produced \textit{via} a synchronous, concerted 2H elimination process, while other channels were all binary dissociation process.

5 Unsaturated hydrocarbons (aliphatic)

Ethylene

Ethylene (H\textsubscript{2}C=CH\textsubscript{2}) is a prototypical alkene molecule, important in astrophysics, combustion and atmospheric sciences. Intermediacy of the ethylidene intermediate is an interesting issue.

The dissociation of ethylene under the excitation by a high energy photon involves
different dissociation channels:

\[
\begin{align*}
\text{C}_2\text{H}_4 + h\nu & \rightarrow \text{HC}=\text{CH} + \text{H}_2 & (5.1) \\
& \rightarrow \text{H}_2\text{C}=\text{C} : + \text{H}_2 & (5.2) \\
& \rightarrow \text{H}_2\text{C}=\text{CH} + \text{H} & (5.3) \\
& \rightarrow \text{HC}=\text{CH} + \text{H} + \text{H} & (5.4)
\end{align*}
\]

The relative branching ratio for the atomic and molecular hydrogen elimination channel is an interesting issue. For the atomic hydrogen elimination, the triple dissociation channel is complicated.

Lin et al.\(^8\) investigated both the atomic and molecular hydrogen elimination at 157 nm, using five different isotopomers, i.e., \(\text{C}_2\text{H}_4, \text{C}_2\text{D}_4, \text{CD}_2\text{CH}_2, \text{cis-}\) and \(\text{trans-CHDCHD}\). The 1,1-, 1,2-\(\text{cis}\) and 1,2-\(\text{trans}\) \(\text{D}_2\) elimination processes showed significant differences in the kinetic energy distributions, indicating that the dynamics of \(\text{D}_2\) elimination from different sites were quite different. The difference may partly arise from the different transition states. That of 1,2-elimination was theoretically believed to be the ethylidene radical (\(\text{CHCH}_3\)).

The photodissociation of ethylene in the higher energy region was explored by O’Reilly et al.,\(^9\) using 106–58 nm (11.7–21.4 eV) SR. Emission from the excited fragments \(\text{CH}^* (\text{A}^2\text{D})\), and \(\text{CH}^* (\text{B}^2\Sigma^-)\) were measured. Their formation thresholds were identified and associated with two dissociation channels \(\text{CH}^* + \text{CH}_3\) and \(\text{CH}^* + \text{CH} + \text{H}_2\). The intermediacy of ethylidene was proposed.

Photodissociation dynamics of propene was studied by Lee et al.,\(^10\) at 157.6 nm. The observed eleven photofragments were ascribed to eight (five binary and three triple) dissociation channels: \(\text{C}_3\text{H}_5 + \text{H}, \text{C}_3\text{H}_4 + \text{H} + \text{H}, \text{C}_3\text{H}_4 + \text{H}_2, \text{C}_3\text{H}_3 + \text{H}_2 + \text{H}, \text{C}_2\text{H}_4 + \text{CH}_2, \text{C}_2\text{H}_3 + \text{CH}_3, \text{C}_2\text{H}_2 + \text{CH}_4\), and \(\text{C}_2\text{H}_2 + \text{CH}_3 + \text{H}\). The complicated multichannel dissociation process showed a propensity towards triple dissociations, notably the \(\text{C}_2\text{H}_2 + \text{CH}_3 + \text{H}\) channel.

Acetylene

Kono et al.,\(^11\) photolyzed acetylene in the 135.3–130.8 nm range, corresponding to the excitation to (\(\text{D}^1\Pi_u, \text{E}^1\Lambda, \text{F}^1\Sigma_u^+\)) states. Photofragment emission yield spectroscopy of \(\text{C}_2\text{H}\ (\text{A}^2\Pi, \text{B}^2\text{A}')\) revealed that the \(\text{D}_3 1^1, \text{D}^1 1^3 1^1, \text{F}^3 1^1, \text{and} \text{F}^1 1^1 3_1^1\) bands were broadened significantly compared with the corresponding origin bands, indicating that the dissociation was accelerated significantly by the antisymmetric C–H stretch (\(v_3\)) in the \(\text{D}\) and \(\text{F}\) states. Yamakita et al.,\(^12\) studied predissociation of acetylene excited in the \(\text{A}^1\text{A}_u\) state around the adiabatic dissociation threshold (47 000–50 600 cm\(^{-1}\)) by LIF and H-atom action spectra. The line intensities of the H-atom action spectra increased at the higher excitation energies, indicating the more efficient predissociation. The lifetime was shortened from 100 ps at 47 000 cm\(^{-1}\) to 25 ps at 50 600 cm\(^{-1}\), which exceeds the adiabatic dissociation threshold of the \(\text{A}\) state by 933 cm\(^{-1}\).

Zamith et al.,\(^13\) investigated the predissociation of highly excited states in acetylene by time-resolved photoelectron spectroscopy. Electronic states lying in the 4s–3d Rydberg region were excited with one femtosecond laser pulse. They were able to
extract short decay lifetimes through time-resolved photoelectron spectroscopy. The lifetimes measured were 20–200 fs for HCCH, and those in DCCD were somewhat longer (about 600 fs).

Acetylene derivatives

Allene (H$_2$C=C=CH$_2$) and propyne (H$_3$C–C≡CH) are isomers of each other and identified in the atmospheres of the outer planets and in interstellar clouds. Near-UV photodissociation at 203.3, 209.0 and 213.3 nm was studied by Qadiri et al.,14 using the H (Rydberg) atom photofragment translational spectroscopy. Contrary to the previous studies at slightly higher energy (193 nm), the translational energy spectra associated with the H atom product forming channel in both molecules were essentially identical. Such an behavior could be interpreted in terms of internal conversion to, and isomerization on, the ground state potential energy surface to H$_2$CCH (propargyl)$_1$.

Photodissociation of propyne (HC≡CCH$_3$, HC≡CCD$_3$, DC≡CCH$_3$) at 157 nm was investigated by Harich et al.15 The corresponding dynamics was inherently complex. Hydrogen atom elimination occurred from both the CH$_3$ group and the CCH (ethynyl) group. The former process (relative contribution 0.27) was a single process, while the latter showed two distinct channels (fast H:slow H \sim 0.30:0.43). Molecular hydrogen elimination was also observed, but with a much smaller yield compared to the atomic hydrogen elimination. Comparison of the H$_2$, HD, D$_2$ products from various deuterated molecules showed that the process was not sensitive to the origin of two hydrogen atoms (i.e., scrambling prior to dissociation was important). Two different C–C bond breaking processes were observed: HC≡C + CH$_3$ and CH$_2$ + C$_2$H$_2$ in the ratio of 2.2:1. The existence of CH$_2$ further indicated that the isomerization of propyne was significant prior to dissociation.

Quite recently, Qadiri et al.16 studied the 193.3 and 121.6 nm photolysis of H$_3$CC≡CH, D$_3$CC≡CH and H$_2$C≡C=CH$_2$ (allene) by H (D) Rydberg atom PTS. For the 193.3 nm-photolysis, the total kinetic energy release (TKER) spectra of photofragments resulting from these molecules were found to be essentially identical. The observed energy disposal and the isomer independence were rationalized by the assumption that the fragmentation of both molecules are preceded by internal conversion (IC) to, and the isomerization on, the ground (S$_0$) state. At 121.6 nm, however, the TOF and TKER of H from propyne were significantly different from those from allene. Two competing pathways were assumed for propyne, one from the prepared excited states or “propyne like” state, and the other (giving the slower distribution of H (D) atoms) via the IC and isomerization.

6 Halogenated hydrocarbons, saturated

Chlorine-containing species

In the stratosphere, Cl-containing haloalkanes are dissociated by UV or VUV irradiation to produce Cl atoms, which can then lead to the catalytic decomposition
of ozone. Methyl chloride is the largest natural source (e.g. from tropical plants) of stratospheric chlorine compounds. Lin et al.17 photodissociated CH\textsubscript{3}Cl at 157.6 nm. Products were probed by VUV photoionization by SR. In addition to channels (6.1) and (6.2), these authors found evidence for channel (6.3).

\[
\text{CH}_3\text{Cl} + h\nu \rightarrow \text{CH}_3 + \text{Cl} \quad (6.1)
\]

\[
\rightarrow \text{H} + \text{CH}_2\text{Cl} \quad (6.2)
\]

\[
\rightarrow \text{CH}_2(\tilde{X}{}^3\text{B}_1/\tilde{a}^1\text{A}_1) + \text{HCl} \quad (6.3)
\]

CH\textsubscript{3}CFCl\textsubscript{2} has been used as a replacement for CFCl\textsubscript{3} and for CFCl\textsubscript{2}CF\textsubscript{2}Cl. Although its production was stopped in 1996, the release into atmosphere still continues because of the long-term use of the previously manufactured products. Läuter et al.18 determined the absolute quantum yield of chlorine and hydrogen atoms at 193 nm. The total chlorine atom quantum yield ($\Phi_{\text{Cl+Cl}^+}$) was found to be 1.01, and the H atom quantum yield $\Phi_{\text{H}} = 0.04$.

Bromine-containing species

Atomic bromine exhibits a 40 times more powerful ozone depletion potential than a chlorine atom. Jackson’s group published several papers in this field. Huang at al.19 photolyzed CH\textsubscript{2}Br\textsubscript{2}{+} at 355 nm. The translational energy distribution showed that CH\textsubscript{2}Br+ fragment was formed in highly vibrational states. Xu et al.20 studied photodissociation of bromoform (CHBr\textsubscript{3}) at 267 and 234 nm.

\[
\text{CHBr}_3 + h\nu \rightarrow \text{CHBr}_2 + \text{Br} \quad (6.4)
\]

\[
\rightarrow \text{CHBr} + \text{Br}_2 \quad (6.5)
\]

Besides the atomic dissociation channel (6.4), they found the contribution of the molecular dissociation channel (6.5). The branching ratio of channels (6.4) and (6.5) was 0.74 and 0.26 at 234 nm, respectively. Huang et al.21 photolyzed CHBr\textsubscript{3}{+} at 308, 355 and 610 nm. The only fragment found in the TOF spectra was CHBr\textsubscript{2}{+} at 355 and 610 nm. At 308 nm CBr+ and CHBr+ ions were also found.

Zou et al.22 found $\Phi_{\text{Br}^+ + \text{Br}}$ close to 2 on the 193 nm photodissociation of 1,2-dibromotetrafluoroethane (BrCF\textsubscript{2}CF\textsubscript{2}Br). Following the rupture of one C–Br bond, the second C–Br bond was significantly weaker than a typical C–Br bond, due to the energy associated with forming the C=C bond that largely offsets the energy necessary to break the second C–Br bond. Photodissociation of CH\textsubscript{2}Br\textsubscript{3} (DBM), 1,1- and 1,2-C\textsubscript{2}H\textsubscript{4}Br\textsubscript{2} (DBE) was studied at 248 nm by Lee et al.,23 using product translational spectroscopy. 1,2-DBE dissociated into products Br (fast), Br (slow) and C\textsubscript{2}H\textsubscript{4} in a concerted manner, while simple C–Br bond scission was observed for DBM and 1,1-DBE. The behavior of 1,2-DBE was discussed in terms of the weakness of the C–Br bond strength in the β-bromomethyl radical, that a rapid scission of the second C–Br bond occurred asynchronously with the cleavage of the first C–Br bond.
Iodine-containing species. Concerted vs. sequential dissociation

The advances in femtosecond chemistry made possible the distinction of concerted vs. sequential detachment processes. Farmanara et al.\(^ {24} \) analyzed the 267 nm-photodissociation of CF\(_2\)I\(_2\) by femtosecond time-resolved photoelectron spectroscopy (pump–probe technique combined with the photoelectron–photoion coincidence detection (PEPICO)). They observed that fast (30 fs) relaxation process precedes dissociation (100 fs). The observed products were CF\(_2\), I\(_2\), I, with no CF\(_2\)I. They concluded that the concerted reaction mechanism was dominant, while the sequential decay with the CF\(_2\)I intermediate was negligible.

Femtosecond velocity map imaging of CF\(_2\)I\(_2\) at 264 nm enabled Roeterdink and Janssen\(^ {25} \) to follow the molecular detachment, e.g. a concerted vs. a sequential bond-breaking process, on the time scale of the event. The I\(_2^+\) fragment found at short pump–probe decay (\(\leq 250 \) fs) was attributed to one-photon excitation at 264 nm followed by subsequent ionization, I\(_2^+\) found at long pump–probe decay (\(\geq 500 \) fs) to two-photon excitation at 264 nm to a highly electronically excited state of the parent, followed by concerted asynchronous dissociation producing a highly internally (rotationally) excited I\(_2^\star\) fragment and subsequent ionization of this highly excited I\(_2\) fragment.

Conformation-specific photodissociation

A very interesting conformation-specific photodissociation was reported by Park et al.\(^ {26} \) They succeeded in the selective preparation of the gauche and anti-conformer of 1-iodopropane ions (1-C\(_3\)H\(_7\)I\(^+\)) by coherent VUV mass-analyzed threshold ionization (MATI) of the parent molecules. Then they photodissociated the ions by excitation to the C–I repulsive first excited state by a visible laser pulse (480–700 nm). Substantial difference in the kinetic energy release (0.096 and 0.042 eV for gauche and anti conformers, respectively) observed for the photodissociation at 607 nm was attributed to conformation-specific dissociation pathways, producing 2-propyl ions and protonated cyclopropane ions from gauche and anti-conformers, respectively. However, excitation to the S\(_2\) and S\(_3\) excited states did not show conformation-specificity.\(^ {27} \)

7 Halogenated hydrocarbons, unsaturated (aliphatic)

Halogenated ethylenes. Three-center vs. four-center dissociation

Time-resolved Fourier transform (FT) IR emission spectroscopy was conveniently used in the study of three-center and four-center elimination channels of halogen-substituted ethylenes. Vinyl chloride (H\(_2\)C=CHCl) photodissociation at 193 nm was studied using this technique by Lin et al.\(^ {28} \) Vibrationally excited HCl (\(\nu \geq 7 \)) was detected, with the bimodal rotational distribution (\(T_R = 500 \) and 9500 K for \(\nu \leq 4 \))

The HBr product from photodissociation of vinyl bromide (H\(_2\)C=CHBr) at 193 nm...
was studied by Liu et al.29 using the time-resolved FT IR emission spectroscopy with 0.5 μs resolution.

\[
\begin{align*}
H_2C=CHBr & \rightarrow H_2C=CH + Br \quad (7.1) \\
& \rightarrow H_2C=C: + HBr \text{ (three-centered)} \quad (7.2) \\
& \rightarrow HC=CH + HBr \text{ (four-centered)} \quad (7.3)
\end{align*}
\]

The nascent distribution of the HBr product was extrapolated to be \(T_V = 8690 \text{ K} \) and \(T_R = 7000 \text{ K} \). The vibrational distribution gave a support for the three-centered HBr elimination. Therefore, the HBr product was due to the channel (7.2). The nascent internal energy of vinylidene was deduced to be 24 kcal mol\(^{-1}\). Vinylidene was found to isomerize to acetylene. 2-Chloro-1,1-difluoroethene (\(\text{F}_2C=\text{CHCl} \)) was studied by Wu et al.30 at 193 nm. Vibration–rotationally resolved emission of HCl (\(\nu \leq 3 \)) and HF (\(\nu \leq 4 \)) indicated that HCl was produced via three-center (\(\alpha, \alpha \)) elimination, but HF via four-center (\(\alpha, \beta \)) elimination.

The stability of the allyl radical (\(\text{H}_2\text{C}=\text{CHCH}_2 \)) to C–H scission is an interesting issue. Szpunar et al.31 photodissociated allyl-d\(_2\) iodide (\(\text{H}_2\text{C}=\text{CDCH}_2\text{I} \)) at 193 nm, and studied the dynamics of the nascent allyl-d\(_2\) radical by photofragment translational spectroscopy. The stability of the highly rotationally excited allyl-d\(_2\) radical (\(\text{H}_2\text{C}=\text{CDCH}_2 \)) to C–D scission was confirmed.

8 Aromatic compounds

Direct determination of slow dissociation rate

The absorption of benzene and alkyl-substituted benzenes in the 190–270 nm region corresponds to the excitation of the phenyl ring. It results in an excited state stable with respect to dissociation. Dissociation occurs following the internal conversion to the highly vibrationally excited ground electronic state (“hot molecule”). The dissociation rate of aromatic compounds has been reported extensively, including toluene, \(o-, m-, p-xylene, \) trimethyl-, tetramethylbenzene, etc. However, that of the simplest and most important one (benzene) was lacking, since the rate was much slower and difficult to measure accurately.

Tsai et al.32 studied the dissociation rate of hot benzene and d\(_6\)-benzene, using the multimass ion imaging technique.33 The benzene–He or –Ar mixture under collision-free condition was irradiated at 193 or 248 nm and fragment ions were detected via VUV laser ionization. The measured values were \(1 \pm 0.2 \times 10^5 \) and \(5 \pm 1 \times 10^4 \text{ s}^{-1} \) for \(\text{C}_6\text{H}_6 \) and \(\text{C}_6\text{D}_6 \), respectively. These authors34 studied photodissociation of benzotrifluoride (\(\text{C}_6\text{H}_5\text{CF}_3 \)) at 193 nm. The photofragments observed were F and CF\(_3\). The dissociation rate was measured to be \(6.2 \times 10^4 \text{ s}^{-1} \).

Ring-opening dissociation

Ring-opening dissociation of d\(_6\)-benzene was reported by Tsai et al.35 In addition to the major-channel of D-atom elimination from one-photon excitation, elimination of
two D atoms and two ring-opening dissociation channels, $C_6D_6 \rightarrow CD_3 + C_5D_3$ and $C_6D_6 \rightarrow C_2D_3 + C_4D_3$, resulting from two-photon dissociation, was observed. Fluorobenzene was found to give HF and DF fragments \textit{via} a four-center reaction mechanism (Huang \textit{et al.} 36).

\textbf{Dissociation through the exited state}

Dissociation of benzene occurs following the internal conversion to the highly vibrationally excited ground electronic state ("hot molecule"), as mentioned above. However, photofragment translational energy distributions of ethylbenzene obtained by Huang \textit{et al.} 37,38 at 248 nm (S_1), using multimass ion imaging techniques, were composed of two components, indicating that some 75\% of molecules dissociate through the electronic excited state, and 25\% through a hot molecule mechanism.

\textbf{Benzene derivatives}

\textit{o-} \textit{m-} and \textit{p-} Chlorotoluene were photodissociated at 193 nm by Lin \textit{et al.} 5 In addition to Cl atom elimination (the major channel), photofragments corresponding to the reactions of $C_6H_4ClCH_2 + H$ and $C_6H_4Cl + CH_3$ were observed. \textit{o-} \textit{m-} and \textit{p-} Dibromobenzene and 1,3,5-tribromobenzene were photodissociated at 266 nm by Kadi and Davidsson 39 using femtosecond pump–probe spectroscopy.

\textbf{Photoisomerization}

Photoisomerization of toluene in a molecular beam (collision-free) was observed in the 193-nm photolysis experiments of Lin \textit{et al.} 40 using isotope-labeled toluene ($C_6H_5CD_3$ and $C_6H_5^{13}CH_3$). For $C_6H_5CD_3$, CDH_2, CDH_2, CH$_3$ and their heavy fragment partners were observed, in addition to the major channels ($C_6H_5CD_3 \rightarrow C_6H_5CD_2 + D$, $C_6H_5 + CD_3$). For $C_6H_5^{13}CH_3$, $^{13}CH_3$ and CH$_3$ and their heavy fragment partners were observed. These results showed that 25\% of the excited toluene isomerizes to a seven-membered ring (cycloheptatriene) and then rearranges prior to dissociation.

Azulene ($C_{10}H_8$) was photolyzed at 193 nm by Lin \textit{et al.} 41 using the multimass ion imaging technique. The result showed that most of the azulene molecules isomerize to naphthalene in the ground electronic state prior to dissociation.

Lee \textit{et al.} 42 photodissociated styrene ($C_6H_5CH=CH_2$) at 193 nm. The result showed predominance of molecular elimination of C_2H_2 and H_2. In the latter case, an intermediate bicyclo[4.2.0]octa-2,4,7-triene is formed.

\begin{equation}
C_6H_5CH=CH_2 + h\nu \rightarrow C_6H_6 + C_2H_2 \quad (8.1)
\end{equation}

\begin{equation}
\rightarrow C_6H_6 + H_2 \quad (8.2)
\end{equation}

Nitrobenzene was photolyzed in the gas phase at 266 nm by Li \textit{et al.} 43 monitoring the NO ($X^2\Pi$) product using LIF. \textit{Ab initio} calculations were made to characterize the
transition state and to determine the barrier height for the rearrangement of nitrobenzene to phenyl nitrite (C₆H₅ONO). UV photodissociation of nitrosobenzene was studied by Seiler and Dick⁴⁴ by detecting the NO fragments by LIF.

Laser-aligned molecule

Photodissociation of laser-aligned iodobenzene was reported by Poulsen *et al.*⁴⁵ The yield of I photoproducts, detected by REMPI, was enhanced up to a factor of 2.7 when the dissociation laser was polarized parallel instead of perpendicular to the alignment laser polarization.

9 Cyano compounds

Lyman-α (123.6 nm) photodissociation of HCN and DCN was reinvestigated by Cook *et al.*,⁴⁶ using H (D) Rydberg atom TOF spectroscopy. Although the previous assignment of substantial branching to H + CN (A₂Π, v = 0) was confirmed, additional structure attributable to CN(A₂Π, v = 4–9, N = 26–41) and CN(B²Σ⁺), v = 0, 1 was found. These led to an improved value for the dissociation energy D_0(H–CN) \approx 43710 ± 70 cm⁻¹. Interestingly, the anisotropy parameter β was found to become increasingly parallel with increasing CN internal energy.

Photodissociation of cyclopropyl cyanide (cyclo-C₃H₅CN) at 193 nm was studied by Park and coworkers⁴⁷ by LIF of the CN (X₂Σ⁻, v = 0, 1) fragments. From energetics for various product channels, it was concluded that cyclopropyl cyanide dissociates into an allyl and CN radicals resulting from ring opening prior to dissociation.

The CN product channel from the photodissociation (at 193 nm) of methacrylonitrile (H₂C=C(CH₃)CN) and 2-butenenitrile was also studied by these authors.⁴⁸ The CN (X₂Σ⁻) internal (rotational) and translational energy distributions of both molecules were well represented by statistical prior calculations, assuming CN and allyl (rather than the propenyl isomer) products. It was concluded that methacrylonitrile dissociates in the ground electronic state via allyl cyanide formed by CN and H atom migration prior to dissociation.

In the 193 nm photodissociation of carbonyl cyanide CO(CN)₂, Huber and coworkers⁴⁹ observed two energetically different CN radicals, a rotationally and vibrationally hot one ($T_R \approx 2300$ K, $T_V \approx 3600$ K) and a cold one exclusively in $v = 0$ with $T_R \approx 410$ K. The hot one, together with OCCN, was assigned to α-cleavage, while the cold one was from the spontaneous secondary decay OCCN \rightarrow CO + CN. The three-body decay was sequential. No evidence for a concerted three-body process was obtained.

The photodissociation dynamics of NCNO at 520 and 532 nm was studied by McGivern and North,⁵⁰ using transient frequency modulation Doppler spectroscopy of the CN fragment. They observed that the v–J correlation was small (near zero), indicative of an approximate K-scrambling (see below, section 16). Gas-phase Raman spectra of NCNCS and its photolysis product, isocyanogen (CNCN), were reported by Li *et al.*⁵¹
Ketene

Ketene (CH\textsubscript{2}CO) photodissociation at 193.3, 203.3, 209 and 213.3 nm was studied by Feltham et al.52 The speed and angular distributions of H atom products were probed using H Rydberg atom PTS. Absorption to the 1B\textsubscript{1} excited state was followed by internal conversion to high-lying vibrational levels of ground state, and subsequent unimolecular decay led to the observed H (+ HCCO) products. The kinetic energy distributions were qualitatively reproduced by the statistical adiabatic product distribution (SAPD) method of Cole and Balint-Kurti.

Glyoxal

Chen and Zhu53 used cavity ring-down spectroscopy to investigate the gas-phase photolysis of glyoxal in the wavelength range 290–420 nm. The dependence of the photoproduct (HCO) quantum yield on the photodissociation wavelength, glyoxal pressure, and nitrogen buffer gas pressure was measured. The peak quantum yield was 2.01 ± 0.08. Chen et al.54 determined the threshold for formation of HCO from trans-glyoxal based on the measurement of fluorescence excitation spectra. The threshold was determined to be 394.4 nm.

Acetone

The long-standing issue concerning the concerted vs. sequential breakage of two α-C–C bonds was settled in favor of the stepwise mechanism using femtosecond time-resolved experiments. Zewail’s group published a series of four papers55–58 on femtosecond pump-and-probe TOF spectrometry on Norrish Type-I reactions of acetone and related ketones. The α-cleavage dynamics of acetone following the excitation to the S\textsubscript{1} (n, π*) state55 was observed to occur on the nanosecond time scale. The energy barrier along the α–CC bond dissociation was calculated to be 18 kcal mol-1. The dynamics below the barrier was interpreted to be governed by a rate-limiting S\textsubscript{1}–T\textsubscript{1} intersystem crossing process, followed by α-cleavage on the T\textsubscript{1}-surface.

In the second paper of this series, Diau et al.56 studied anomalous predissociation dynamics of cyclobutanone (cyclo-C\textsubscript{3}H\textsubscript{6}CO) by the femtosecond pump–probe method. Three isotopomers were used: [D\textsubscript{0}], 3,3-[D\textsubscript{2}], 2,2,4,4-[D\textsubscript{4}]cyclobutanone. The decay times of fragment transients, 5.0 ± 1.0, 9.0 ± 1.5, and 6.8 ± 1.0 ps, respectively, were shorter than observed for other aliphatic ketones by three orders of magnitude at the same, or even much higher, excitation energies. They reflect the extremely low (ca. 2 kcal mol-1) energy barrier of cyclobutanones along the α-CC bond breakage (ring-opening) reaction coordinate. The prominent isotope effect was attributed to the importance of ring-puckering motion. Femtochemistry of highly excited ketones was studied in the third57 and fourth58 paper from Zewail’s group. The dissociation reaction of acetone on the S\textsubscript{2} (n, 3s) Rydberg state, generally
assumed to follow a similar pathway to the S_1 excitation, \textit{i.e.}, on the ground electronic state, was reinterpreted along the “new” mechanism that the dissociation occurs on the S_1 surface.

Chen \textit{et al.}59 studied the $S_2(n, 3s)$ Rydberg state at 195 nm, and gave a supporting evidence for Zewail’s “new” mechanism (Fig. 2). Tang \textit{et al.}60 reported the photodissociation reaction of acetone in an intense femtosecond laser field (10^{13}–10^{14} W cm$^{-2}$). The stepwise, field-assisted dissociation mechanism was verified by analyzing the TOF patterns at different laser intensities.

Ketones and carbonic acids

Photodissociation dynamics of dicyclopropyl ketone was studied at 193 nm by Clegg \textit{et al.}61 using time-resolved FTIR spectroscopy and photofragment ion imaging. The photoproducts were $C_3H_5 + CO + C_3H_5$. The C_3H_5 product was not cyclopropyl radicals. It was found that the excited dicyclopropylketone undergoes ring-opening isomerizations to form diallyl ketone, followed by dissociation producing allyl radicals and carbon monoxide.

Ultrafast dynamics of the 3s Rydberg state of three ketones $CH_3CO–R$, $R = C_2H_5$, C_3H_7 and iso-C_4H_9, was studied by Zhong \textit{et al.}62 using ultrafast photoionization spectroscopy. The 3s state lifetimes were similar (2.5–2.9 ps). Those of the acetyl
radical were 8.6, 15 and 23 ps for $R = \text{C}_2\text{H}_5$, C_3H_7 and $\text{iso-C}_4\text{H}_9$, respectively, suggesting that for larger R more vibrational freedom compete for the excess energy so that less energy is partitioned into the internal energy of the acetyl radical. Photodissociation dynamics at 266, 248, and 193 nm of acetylacetone, which exists predominantly as an enolic form $[\text{H}_3\text{CCOCH}=\text{C(OH)CH}_3]$ in the gas phase, was explored by Upadhyaya et al. Dhanya et al. studied OH formation from pyruvic acid (CH_3COCOOH) at 193 nm.

11 Free radicals

Halogenated methyl radicals

Halogenated methyl radicals are important in stratospheric chemistry, since they provide an additional source of photolytic halogen atoms. Reisler’s group photolyzed chloromethyl radicals (CH_2Cl) in the wavelength range 312–214 nm. Among the dissociation channels,

$$\text{CH}_2\text{Cl} \rightarrow \text{Cl} + \text{CH}_2 \quad (11.1)$$

$$\rightarrow \text{H} + \text{CHCl} \quad (11.2)$$

channel (11.1) was identified as a major one. With 312–247 nm photolysis, the angular distributions were typical of a perpendicular transition ($\beta = -0.7$), and the main products was $\text{CH}_2(\text{X}\text{^3B}_1) + \text{Cl}(\text{2P}_{3/2})$. The available energy was partitioned preferentially into translational degrees of freedom. Hot band transitions were prominent even in the molecular beam, indicating that the geometries of the ground and excited states of CH_2Cl must be very different. With 240–214 nm photolysis, $\beta = 1.2$ (parallel transition), and the predominant products were $\text{CH}_2(\text{a}\text{^1A}_1) + \text{Cl}(\text{2P}_{3/2,1/2})$. A large fraction of the available energy was partitioned into internal energy of $\text{CH}_2(\text{a}\text{^1A}_1)$. In the region in between (243–235 nm), the Cl images indicated the participation of two transitions, perpendicular ($1\text{^2A}_1–1\text{^2B}_1$) and parallel ($2\text{^2B}_1–1\text{^2B}_1$). H-atoms from channel (11.2) was identified as a minor product. Its angular distribution exhibited perpendicular character only.

The hydroxymethyl radical

Photodissociative spectroscopy of the hydroxymethyl radical (CH_2OH) in its two lowest excited electronic states, $3s$ and $3p_x$, was reported by Feng et al., using depletion, REMPI and photofragment yield (PFY) methods. The result on CH_2OD showed that only the O–D bond scission pathway was important near the onset of the 3s state, while both H and D products were detected following excitation to the $3p_x$ state. On the former excitation (352.5 nm), the fraction of available energy into the translational degree of freedom (f_T) was 0.69, and the recoil anisotropy was negative ($\beta_{\text{eff}} = -0.7$), consistent with the perpendicular nature of the transition.
The NCO radical

NCO is an intermediate in the combustion of nitrogeneous fuels in air. It has also been proposed as a key intermediate in the RAPRENOs (rapid reduction of NOx) process. The NCO radical was studied by two groups. The geometry of the excited state was inferred from high f_R values. Hoops et al.69 used fast beam PTS. Excitation of the $1^0_0, 3^0_0, 1^0_23^0_0$ transitions of the $\tilde{B}^2\Pi - \tilde{X}^2\Pi$ band produced exclusively N(4S) + CO, while excitation of the $1^0_03^0_0$ transition yielded primarily N(2D) + CO photoproducts. The N(2D) + CO distribution could be fit by phase space theory, while the higher degree of CO rotational excitation for N(4S) + CO products implied that NCO passes through a bent geometry upon dissociation. Gomez et al.70 photolyzed NCO at 193 nm, and detected N (2D, 2P) and CO (1S) products by VUV LIF. The CO vibrational distribution was modeled with prior distributions for each of the channels with coproducts N (4S, 2D and 2P). For the N (2D) + CO (1S) channel, the average energy disposal ($f_T \approx 0.08$, $f_V \approx 0.24$, $f_R \approx 0.68$) suggested that the geometry of the dissociation state of NCO is likely bent.

12 Nitrogen dioxide and halogen nitrates

Nitrogen dioxide

The photochemistry of NO\textsubscript{2} plays a critical role in the chemistry of the troposphere and stratosphere. The relevant reaction channels are

$$\text{NO}_2 + h\nu \rightarrow O(1^3P) + \text{NO}(X^2\Pi), \lambda_{\text{th}} = 398 \text{ nm} \quad (12.1)$$

$$\rightarrow O(1^1D) + \text{NO}(X^2\Pi) 244 \text{ nm} \quad (12.2)$$

$$\rightarrow N(4S) + O_2(3\Sigma^-) 275 \text{ nm} \quad (12.3)$$

Richter et al.71 photodissociated NO\textsubscript{2} at 212.8 nm. The products were predominantly O(1D) + NO(X\textsubscript{2}Π, $v = 3$). In the 193-nm photodissociation, Sun et al.72 obtained $O(1^1D)/(O(1^3D) + O(3^3P)) = 0.55 \pm 0.03$, and the rate constant $k[O(1^1D) + \text{NO}_2] = (1.5 \pm 0.3) \times 10^{-10} \text{ cm}^{-3} \text{ s}^{-1}$. Im and Bernstein73 studied in the range 217–237 nm. At 226 nm, NO(X\textsubscript{2}Π) products were in the vibrational ground state, and rotationally cold ($T_R = \text{ca.} 30 \text{ K}$). Most of the excess energy should be released to the translational degrees of freedom of the products.

Stolyarov et al.74 measured the rate constant $k(E)$ immediately above the dissociation threshold (25 128.57 ± 0.05 cm$^{-1}$ or 397.95 nm) by recording the LIF of NO. They found a rapid increase of $k(E)$ from $\approx 2 \times 10^{10}$ to $\geq 1.3 \times 10^{11} \text{ s}^{-1}$ within 25 cm$^{-1}$ of the reaction threshold, and reported that it could not be understood on the basis of current theory. However, Abel et al.75 commented that the data of Stolyarov et al. can be explained by quantum mechanical calculations on the global three-dimensional potential energy surface.

Morrell et al.76 studied the 248 nm photolysis of NO\textsubscript{2}/N\textsubscript{2}O\textsubscript{4} using time-resolved FTIR emission. The photolysis of NO\textsubscript{2} produced the $\Delta\nu = -1, -2$ fundamental and

overtone bands of NO (X2II), and a broad Gaussian-type distribution in the vibrational levels v = 2–8.

Halogen nitrates

Chlorine nitrate (ClONO2) is one of the most important temporary reservoir of reactive chlorine. Zou et al.77 studied photodissociation of ClONO2 at 235 nm. Several channels are accessible:

\[
\text{ClONO}_2 + h\nu \rightarrow \text{ClO} + \text{NO}_2 \quad (12.4) \\
\rightarrow \text{Cl} + \text{NO}_3 \quad (12.5) \\
\rightarrow \text{ClONO} + \text{O} \quad (12.6)
\]

Although the ClO–NO2 bond is the weakest in the ClONO2, previous experimental studies reported that the channel (12.4) is of minor importance. Zou et al. have now determined the total Cl atom quantum yield to be 0.42 and a ClO quantum yield of 0.58, on the basis of simulations to their TOF data. Photodissociation of bromine nitrate (BrONO2) was studied by Soller et al.78

13 Photodissociation of vibrationally excited molecules (IR-mediated photodissociation)

In the vibrationally mediated photodissociation (VMP) studies, molecules are first excited to vibrational fundamental or overtone/combination excited states, and then photodissociated by a second (UV) photon. The UV photons also serve to tag photoproducts by MPI.

High-resolution VMP not only supplies the high-resolution spectroscopy of the intermediate overtone states, but unravels finer details of intramolecular rotation–vibration interactions which influences the dynamics of the excited molecules (enhancement of photodissociation yield, variation of branching ratio among photoproducts, introduction of the three-body decay, etc.).

Halogenated hydrocarbons

Rosenwaks’ group studied the ultraviolet (∼235/243.135 nm) photodissociation of the fundamental symmetric and/or overtones of the CH3 stretch of CHF2Cl,79 CHFCl2,80 CH3CF2Cl,81 and CH3CFCl2.82,83 The UV wavelengths tag the 35Cl(2P0) and 37Cl(2P2), or H photofragments by REMPI. In the case of CHF2Cl,79 molecules excited via stretch–bend polyad (N = 3, 7/2 and 4) were dissociated by UV photons.†

† The C–H stretch–bend polyad components are the complex mixture of stretching and bending modes labeled by the quantum number \(N = v_s + \frac{1}{2}v_a + \frac{1}{2}v_b\) (\(v_s\) is the number of the pure stretching state, \(v_a\) is the quantum number for the first bending and \(v_b\) for the second).
Action spectra for Cl/Cl* fragments revealed vibrational redistribution times in the range of 1–18 ps. Chen et al. showed the evidence for the onset of three-body decay in photodissociation of vibrationally excited CHFCl₂. For CH₃CF₂Cl and CH₃CFCl₂, VMP experiments via 3, 4 and 5 quanta of CH stretch + ~235 nm were performed. The initial vibrational state preparation not only enhances C–Cl and C–H bond cleavage but also affects the Cl*/Cl branching ratio, as compared to the nearly isoenergetic one-photon 193 nm photolysis of the vibrationless ground state. Photofragment yield enhancement for H, Cl and Cl* were 1.0, 1.5, 1.8, respectively, for 3νCH VMP, and 3.5, 3.5 and 4.7, respectively, for 4νCH VMP. The Cl*/Cl branching ratio on 3νCH and 4νCH VMP was, respectively, 0.54 and 0.55 (to be compared with 0.25 of direct photodissociation) for CH₃CF₂Cl, and 0.49 and 0.46 (to be compared with 0.22 of direct photodissociation) for CH₃CFCl₂.

Acetylene

Sheng et al. studied VMP of acetylene in the region of 4νCH (around 12 676 cm⁻¹) + 243.135 nm, probing the yield of H atoms. It was found that the (1030000) IR bright state of the third C–H stretch overtone (excited with four CH stretching quanta, one symmetric and three antisymmetric) has a smaller photodissociation cross section than the (1214000) combination band containing trans-bend mode excitation and lying in its vicinity, due to a favorable Franck–Condon factor for the latter.

Ammonia

VMP of ammonia was studied by Crim’s group. Bach et al. used VMP action spectra to measure the rotation–vibrational spectra (2.3–3.0 μm) of ammonia in the electronic ground state. They detected the emission of electronically excited NH₂(Å ₂A₁) produced by the photodissociation of vibrationally excited molecules. Isoenergetic photolysis of ammonia molecules with one quantum of antisymmetric N–H stretching (v₃) or two quanta of bend (2ν₄) produced three times more NH₂(Å ₂A₁) than photolysis of molecules with a quantum of symmetric N–H stretch (v₁) excitation. They determined the vibronic structure and photodissociation dynamics of the Å state of ammonia. Initial vibrational excitation in the electronic ground state of ammonia changes the Franck–Condon factors for the subsequent electronic transitions markedly and allows assignments of sharp resonances to a progression in the degenerate bending mode. The simulation of the vibronic band envelopes provides band origins and homogeneous rovibronic bandwidths for states containing the umbrella and bending modes. The lifetimes of the bending states decreased monotonically with excess energy from 115 fs for 4¹ to 13 fs for 4⁴ vibronic states in the Å state of ammonia. Rotational excitation of the recoiling NH₂ products was also reported (Fig. 3).
Photodissociation of ozone continues to attract a great deal of current attention in relation to the ozone depression issue. In the Hartley band, ozone primarily dissociates through the spin conserved channels,

$$O_3 + h\nu \rightarrow O_2 ({{^1}\Delta_g}) + O ({{^1}\Delta_D})$$ \hspace{1cm} (14.1)

14 Ozone O_3

Fig. 3 Total kinetic energy release spectrum for the $H + NH_2$ fragments resulting from vibrationally mediated dissociation of \tilde{A} state ammonia from the $0^0 (J = 2, K = 0)$ level at a total energy of 47032 cm$^{-1}$ (top) and the $4^1 (J = 1, K = 1)$ level at a total energy of 46208 cm$^{-1}$ (bottom). The combs above the spectra mark the corresponding internal energies of the NH$_2$(\tilde{X}) fragments. The spectrum (b) shows an inverted rotational population distribution with only levels $N \sim K_a > 6$ populated. (Reprinted with permission from J. Chem. Phys., 2003, 118, 7144.)

Dylewski et al.88 probed the O (^{1}D_{2}) fragment in the photodissociation in the Hartley band (UV) at eight wavelengths between 235 and 305 nm, the last wavelength being close to the threshold of the reaction (14.1). The corresponding vibrational populations of O_{2} (^{1}\Delta_{g}) were peaked at \nu = 0. The spatial anisotropy parameter \beta changed monotonically from about 1.2 at 235 nm to 1.7 at 298 nm. If the excited ozone molecule were to dissociate from the same geometry as the ground state (the O–O–O angle of 116.8°), the value of \beta close to 1.18 is to be expected. The v–J correlations were reflected in the O (^{1}D_{2}) | m_{J} | populations, where m_{J} is the projection of the angular momentum along the relative velocity vector of the dissociating fragments. The peak at | m_{J} | = 0 indicated a parallel, incoherent excitation, expected for excitation to a single dissociative state of A’ symmetry, and substantial bending of the ozone molecule before dissociation.

Chakraborty and Bhattacharya89 addressed the issue of enrichment of heavier isotopomer in stratospheric ozone. They studied 16O/17O/18O mass-dependent photodissociation in the visible region (Chappuis band, probed at 520 and 630 nm) and in the UV (Hartley band, probed at 253.6 and 184.9 nm). In the former region, only (14.2) occurs. In the UV region, both channels (14.1) and (14.2) are operative, and moreover, the O (^{1}D)-mediated dissociation channels

\begin{equation}
O_{3} + hv \rightarrow O_{2} (X^3\Sigma_{g}^{-}) + O (^{3}P_{2,1,0}) \tag{14.2}
\end{equation}

\begin{align*}
O (^{1}D) + O_{3} & \rightarrow 2O_{2} \tag{14.3} \\
& \rightarrow 2O (^{3}P) + O_{2} \tag{14.4}
\end{align*}

complicate the situation. These authors gave the covariation plot \Delta \delta(17O)/\Delta \delta(18O) in both regions. The slope of the plot was 0.54 ± 0.01 in the visible, expected for the mass-dependent process while the slope in the UV region was 0.63 ± 0.01, showing the contributions of both the mass-independent (pure) dissociation channels and the mass-dependent O (^{1}D)-mediated dissociation channels.

15 Other compounds

There are still many more “molecules of interest”. A few research works are listed here.

Symmetric chlorine dioxide ClO\textsubscript{2} has been the target of a wealth of experimental and theoretical studies, because of its presumed influence on polar ozone. Delmdahl \textit{et al.}90 applied the velocity map imaging technique on the dissociation of ClO\textsubscript{2} highly photoexcited into the (24, 0, 0) vibronic level of the first excited \(^2\text{A}_2\) state. The recoil of the ClO (X\(^2\Pi\)) and O (\(^3\text{P}\)) fragments was highly anisotropic. The available energy was channeled almost entirely into CO vibration. The excess energy was focused only in the three highest possible CO vibrational levels \nu = 18–20. This was attributed to a virtually linear geometry of the decaying parent evolving along the (close-lying) \(^2\text{A}_1\) potential energy surface.

Photodissociation dynamics of the S\textsubscript{2} state of methyl nitrite (CH\textsubscript{3}ONO) was studied by Yin \textit{et al.}91 The molecule was irradiated at 266 nm, and the product NO (X\(^2\Pi\), \nu = 0–3) was detected by LIF. The rotational distributions were quite hot.

Ethyl ethynyl ether (HC≡COCH\textsubscript{2}CH\textsubscript{3}) is an interesting molecule. Krisch \textit{et al.}92
studied photodissociation at 193 nm. Only the cleavage of the C–O bond to form C2HO radical and C2H5 (ethyl radical) was observed. The C2HO radical was formed in two distinct channels, one with higher and the other with lower recoil kinetic energy. They were respectively attributed to ketenyl (HCCO) product in $\tilde{X}(^2A^\gamma)$ or $\tilde{A}(^4A^\gamma)$ state, and those in a spin-forbidden $\tilde{a}(^4A^\gamma)$ state. CIN$_3$ was photodissociated at 203 nm (Hansen et al.93). Images of state-selected N$_2$($^1\Sigma_g^+$, $v = 0$, $J = 68$) was used to characterize the internal energy of the photofragments.

$$\text{ClN}_3 + h\nu \rightarrow \text{N}_2(^1\Sigma_g^+) + \text{NCl}(^1\Delta) \quad (15.1)$$

$$\rightarrow \text{N}_2(^1\Sigma_g^+) + \text{NCl}(^3\Sigma^-). \quad (15.2)$$

Velocity-map imaging study of the O(3P) + N$_2$ product channel following 193 nm photolysis of N$_2$O was performed by Brouard et al.94 About 60% of available energy appeared in product translation.

16 Vector correlations

Besides the energetic content, spatial distributions of fragments on polarized laser excitation of the parent molecules are frequently studied. The anisotropy parameter β supplies the information of the parallel/perpendicular nature of the absorption transition moment to the polarization of the exciting light. It shows the promptness of dissociation event, \textit{i.e.} whether or not the dissociating molecule have the time to rotate before the dissociation.

Correlation between the fragment velocity vector V and rotational angular momentum vector J (the V–J correlation) can provide insight to the torques on the departing fragments during dissociation. Although they have initially been applied to direct dissociation processes, even in purely statistical dissociation that is well described by the phase-space theory (PST), one can expect V–J correlation as a consequence of energy and momentum conservations. McGivern and North50 investigated this aspect on the photodissociation of NCNO, which is known as a prototypical case of statistical dissociation. Of particular interest is whether the V–J correlation can provide insight into the role of the K-rotor energy, \textit{i.e.}, whether the K-rotor should be treated as adiabatic, requiring its angular momentum to be conserved throughout the reaction, or whether it should be allowed to couple into the reaction coordinate. Doppler spectroscopy experiments were performed to measure state-selected CN scalar and vector correlations at 520 and 532 nm. These authors found that the correlated vibrational and rotational distributions could be well described using separate statistical ensembles/phase space theory (SSE/PST), if the K-rotor was considered inactive. This is indicative of approximate K-scrambling at the transition state.

Hydrogen peroxide is noted for the “cartwheel” rotation of the two OH fragments, keeping with the angular momentum conservation law. Alexander95 photodissociated hydrogen peroxide at 355 nm, the wavelength far from its absorption maximum, using both linearly and circularly polarized light. This wavelength corresponds to the long wavelength tail of the ultraviolet absorption band. The effects of dynamical

torsion and parent molecule bending vibrations on product rotational alignment were discussed, and gave the evidence supporting preferential dissociation of ground-state molecules far from the equilibrium configuration.

17 van der Waals molecules and clusters

The intriguing nature of \((\text{NO})_2\) is that it belongs to the special family of weakly bound complexes that are covalently bound in the ground state \((D_0 \approx 710 \pm 15 \text{ cm}^{-1})\). UV photodissociation of \((\text{NO})_2\) was studied in detail by Reisler and coworkers.

\[
(\text{NO})_2 + h\nu \rightarrow \text{NO}(A^2\Sigma^+) + \text{NO}(X^2\Pi) \quad (17.1)
\]

They measured angular distributions of selected rotational states of NO \((A^2\Sigma^+, v = 0)\) products obtained in the 213 nm photodissociation of \((\text{NO})_2\). The recoil anisotropy parameter of the photofragments \((\beta_{\text{eff}})\) decreased significantly at low center-of-mass translational energy \((E_T)\) from its maximum value of \(1.36 \pm 0.05\). They explained such a variation by considering a classical model that takes into account the transverse recoil component mandated by angular momentum conservation. For most of the center-of-mass translational energy range, both co-rotating and counter-rotating fragments are produced, but at the lowest energies, only the latter is allowed. Suzuki’s group studied the UV photodissociation of \((\text{NO})_2\) using femtosecond charged particle imaging. Inokuchi et al. reported on IR photodissociation spectroscopy of \([\text{aniline–(water)}]_n^+\) \((n = 1–8)\). The \(n = 1\) ion was shown to have an N–H…O hydrogen bond. For the \(n = 3\) ion, the calculated spectrum of the 2–1 branched structure coincided well with the observed one. The \(n = 6–8\) ions showed features quite different from those of the \(n = 1–5\) ions. Proton-transferred structures were suggested for \(n = 6–8\) ions.

18 Metal complexes

Photodissociation of metal (monovalent positive ion \(M^+\))-containing molecules attract much attention. Usually, photodissociation products are detected by mass spectrometer, mostly of the time-of flight type. Elimination of one or more ligand(s) was found to be the dominant channel. Fragmentation of ligand(s) is observed in some cases. In many cases the major products are metal ions.

Action spectra of fragment(s) provide the absorption spectra of the complexes. This method is denoted photodissociation spectroscopy and leads to the elucidation of the nature of metal–ligand bonds. Some are covalent, and some are very weak, corresponding to solvated complexes in solution. The elimination of ligand(s) is sometimes called “evaporation”, in the latter case.

Magnesium complexes have received the attention of many research groups. In the photodissociation of \(\text{Mg}^+-\text{formaldehyde}\), Kleiber and coworkers obtained \(\text{MgH}^+\) along with \(\text{Mg}^+.\) Yang and coworkers studied diethylamine and triethylamine complexes. In the latter case, charge-transfer (CT) products \(\text{N}^+(\text{C}_2\text{H}_5)_3\) and \((\text{C}_2\text{H}_5)_2\text{N}^+\text{CH}_2\) were obtained, together with \(\text{Mg}^+\) and \(\text{Mg}^+\text{N}(\text{C}_2\text{H}_3)\text{CH}_3.\) Acrylonitrile clusters, \(\text{Mg}^+(\text{CH}_2=\text{CHCN})_n\) \((n = 1–10)\), were studied by Furuya et al. They obtained photodissociation spectra for \(n = 1, 2,\) and photofragment.
Fig. 4 The photodissociation difference mass spectra from the photolysis laser on-minus-off of Mg\(^+\)(AN)\(_2\) (a), and branching ratios of fragment ions produced by photolysis of Mg\(^+\)(AN)\(_n\) (\(n = 1–10\)) at the dissociation wavelength of 355 nm. AN stands for acrylonitrile. (Reprinted with permission from J. Chem. Phys., 2003, 118, 5456.)
<table>
<thead>
<tr>
<th>Metal:ligand</th>
<th>Wavelength/ wavenumber</th>
<th>Method</th>
<th>Detected species</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg$^+$H$_2$CO</td>
<td>16 660–45 450 cm$^{-1}$</td>
<td>PDSa</td>
<td>Mg$^+$, MgH$^+$</td>
<td>99</td>
</tr>
<tr>
<td>Mg$^+$NH(C$_2$H$_5$)$_2$</td>
<td>230–440 nm</td>
<td>PDS</td>
<td>Mg$^+$, Mg$^+$NHCH$_3$, (C$_2$H$_5$)HN$^+$CHCH$_3$</td>
<td>100</td>
</tr>
<tr>
<td>Mg$^+$N(C$_2$H$_5$)$_3$</td>
<td>230–440 nm</td>
<td>PDS</td>
<td>Mg$^+$, Mg$^+$N(C$_2$H$_5$)CH$_3$, N$^+$[C$_2$H$_5$]$_3$, (C$_2$H$_5$)$_2$N$^+$CH$_2$</td>
<td>100</td>
</tr>
<tr>
<td>Mg$^+$/[CH$_2$=CHCN]$_n$ (n = 1, 2)</td>
<td>20 000–45 000 cm$^{-1}$</td>
<td>PDS</td>
<td>Evap.b</td>
<td>101</td>
</tr>
<tr>
<td>Mg$^+$/[CH$_2$=CHCN]$_n$ (n = 1–10)</td>
<td>355 nm</td>
<td>Evap.</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Mg$^+$OCNC$_2$H$_5$</td>
<td>230–410 nm</td>
<td>PDS</td>
<td>Mg$^+$, Mg$^+$OCN</td>
<td>102</td>
</tr>
<tr>
<td>Mg$^+$[NCCH$_3$]$_n$ (n = 4)</td>
<td>240–540 nm</td>
<td>PDS</td>
<td>Evap., Mg$^+$, Mg$^+$NC</td>
<td>103</td>
</tr>
<tr>
<td>Mg$^+$[CO$_2$]$_n$(n = 2–6)</td>
<td>2300–2450 cm$^{-1}$</td>
<td>IRPDS</td>
<td>Evap.c</td>
<td>104</td>
</tr>
<tr>
<td>Mg$^+$[CO$_2$]$_n$Ar (n = 1–3)</td>
<td>2300–2450 cm$^{-1}$</td>
<td>IRPDS</td>
<td>Mg$^+$([CO$_2$]$_n$)</td>
<td>104</td>
</tr>
<tr>
<td>Mg$^+$NH$_3$</td>
<td>26 000–41 000 cm$^{-1}$</td>
<td>PDS</td>
<td>Mg$^+$, Mg$^+$NH$_2$, NH$_3$$^+$ (charge transfer product)</td>
<td>105</td>
</tr>
<tr>
<td>Mg$^+$[NH$_3$]$_n$ (n = 2)</td>
<td>26 000–41 000 cm$^{-1}$</td>
<td>PDS</td>
<td>Mg$^+$, Mg$^+$NH$_2$, Mg$^+$NH$_2$NH$_3$, Mg$^+$NH$_3$</td>
<td>106</td>
</tr>
<tr>
<td>Mg$^+$[NH$_3$]$_n$ (n = 3, 4)</td>
<td>26 000–41 000 cm$^{-1}$</td>
<td>PDS</td>
<td>Evap.d</td>
<td>106</td>
</tr>
<tr>
<td>Al$^+$C$_2$H$_4$</td>
<td>32 000–46 000 cm$^{-1}$</td>
<td>PDS</td>
<td>Al$^+$, C$_4$H$_4$$^+$</td>
<td>107</td>
</tr>
<tr>
<td>Al$^+$C$_6$H$_6$</td>
<td>32 000–46 000 cm$^{-1}$</td>
<td>PDS</td>
<td>Al$^+$, C$_6$H$_6$$^+$</td>
<td>107</td>
</tr>
<tr>
<td>Al$^+$C$_6$H$_6$ (n = 1–10)</td>
<td>29 000–46 000 cm$^{-1}$</td>
<td>PDS</td>
<td>Al$^+$</td>
<td>108</td>
</tr>
<tr>
<td>Al$^+$C$_6$H$_6$</td>
<td>600–1800 cm$^{-1}$</td>
<td>IRPDS</td>
<td>Al$^+$</td>
<td>109</td>
</tr>
<tr>
<td>Ca$^+$Ar$_2$</td>
<td>13 890–14 240 cm$^{-1}$</td>
<td>PDS</td>
<td>Ca$^+$Ar</td>
<td>110</td>
</tr>
<tr>
<td>Ca$^+$HCHO</td>
<td>14 000–36 000 cm$^{-1}$</td>
<td>PDS</td>
<td>Ca$^+$</td>
<td>111</td>
</tr>
<tr>
<td>Fe$^+$[CO$_2$]$_n$</td>
<td>20 50–4500 cm$^{-1}$</td>
<td>IRPDS</td>
<td>Loss of one CO$_2$</td>
<td>112</td>
</tr>
<tr>
<td>Fe$^+$[CO$_2$]$_n$Ar (n = 1–14)</td>
<td>20 00–4500 cm$^{-1}$</td>
<td>IRPDS</td>
<td>Loss of Ar</td>
<td>112</td>
</tr>
<tr>
<td>Fe$^+$[CO$_2$]$_n$Ar (n = 2–14)</td>
<td>20 00–4500 cm$^{-1}$</td>
<td>IRPDS</td>
<td>Successive elimination of CO$_2$</td>
<td>113</td>
</tr>
<tr>
<td>Zn$^+$CH$_4$</td>
<td>227–263 nm</td>
<td>PDS</td>
<td>Zn$^+$CH$_3$ (major), CH$_3$$^+$, Zn$^+$, ZnH$^+$</td>
<td>114</td>
</tr>
<tr>
<td>Zn$^+$C$_2$H$_4$</td>
<td>220–550 nm</td>
<td>PDS</td>
<td>Zn$^+$, C$_2$H$_4$$^+$ (major), C$_2$H$_3$$^+$, C$_2H_2$$^+$ (< 250 nm)</td>
<td>115</td>
</tr>
<tr>
<td>Sr$^+$CO</td>
<td>19 000–23 000 cm$^{-1}$</td>
<td>PDS</td>
<td>Sr$^+$</td>
<td>116</td>
</tr>
<tr>
<td>Sr$^+$CO</td>
<td>15 600–16 200 cm$^{-1}$</td>
<td>PDS</td>
<td>Sr$^+$</td>
<td>117</td>
</tr>
<tr>
<td>Sr$^+$/[CH$_3$(OH)]$_n$</td>
<td>310–1500 nm</td>
<td>PDS</td>
<td>Sr$^+$</td>
<td>118</td>
</tr>
<tr>
<td>Sr$^+$/[CH$_3$(OD)]$_n$ (n = 1–4)</td>
<td>561 nm</td>
<td>PDS</td>
<td>Sr$^+$ (−L)e, SrOD$^+$ (−Me), SrOCH$_3$$^+$ (−D)</td>
<td>118</td>
</tr>
<tr>
<td>Sr$^+$/[CH$_3$(OD)]$_2$</td>
<td>588 nm</td>
<td></td>
<td>−L, −Me, −D, −2L, −(L + Me), −(L + D)</td>
<td>118</td>
</tr>
<tr>
<td>Sr$^+$/[CH$_3$(OD)]$_3$</td>
<td>594 nm</td>
<td></td>
<td>−L, −D, −2L, −(L + Me), −(L + D), −(2L + Me), −(2L + D)</td>
<td>118</td>
</tr>
<tr>
<td>Sr$^+$/[CH$_3$(OD)]$_3$</td>
<td>780 nm</td>
<td></td>
<td>−L, −D, −2L, −(L + Me), −(L + D)</td>
<td>118</td>
</tr>
<tr>
<td>Sr$^+$/[CH$_3$(OD)]$_4$</td>
<td>656 nm</td>
<td></td>
<td>−L, −2L, −(L + Me), −(L + D), −(2L + Me), −(2L + D), −3L</td>
<td>118</td>
</tr>
</tbody>
</table>
mass spectra (at 355 nm) for \(n \sim 1–10 \) (Fig. 4). Sun et al.102 studied the Mg+–ethyl isocyanate complex Mg+OCNC\textsubscript{2}H\textsubscript{5}. Apart from the persistent product Mg+, Mg+OCN and C\textsubscript{2}H\textsubscript{5}+ were obtained as photoproducts.

Acetonitrile clusters (Mg+(NCCH\textsubscript{3})\textsubscript{n} \((n = 1–4)\), were investigated by Yang’s group103 in the 230–560 nm range. The photodissociation products were mostly Mg+ and nonreactive evaporation fragments. Duncan and coworkers104 used an IR optical parametric oscillator/optical parametric amplifier (OPO/OPA) laser for IR photodissociation spectroscopy of Mg+(CO\textsubscript{2})\textsubscript{n} and Mg+(CO\textsubscript{2})\textsubscript{n}Ar clusters. Complexes of Mg+ with ammonia and ammonia clusters Mg+(NH\textsubscript{3})\textsubscript{n} were studied at 355 nm by Fuke and coworkers.105,106 For \(n \sim 1 \), they obtained Mg+, Mg+NH\textsubscript{2} and NH\textsubscript{3}+ (a CT product). For \(n > 3 \), however, only evaporation products were observed.

Kleiber’s group studied Al+ complexes with ethene, propene and butane,107 and with acetaldehyde.108 Meijer, Duncan and coworkers used a tunable free electron laser (FEL) to obtain the IR spectrum of Al+C\textsubscript{6}H\textsubscript{6}.109 Duncan and coworkers110 studied Ca+Ar\textsubscript{2} complexes. Photodissociation spectra were analyzed to infer the structure of the complex (linear or bent). It was found that the complex is most likely linear. Lu et al. of Kleiber’s group111 investigated the photodissociation spectroscopy of Ca+–formaldehyde. A \(C_{2v} \) ground-state geometry with a bond dissociation energy \(D_e (Ca^+–OCH\textsubscript{2}) = 0.9 \pm 0.2 \) eV was obtained.

IR photodissociation of Fe+(CO\textsubscript{2})\textsubscript{n} and Fe+(CO\textsubscript{2})\textsubscript{n}Ar was investigated by Duncan’s group112,113 in the wavenumber range 2050–4500 cm-1. Successive loss of CO\textsubscript{2} ligands was observed for Fe+(CO\textsubscript{2})\textsubscript{n}, and loss of Ar for Fe+(CO\textsubscript{2})\textsubscript{n}Ar\textsubscript{m}. In a series of Fe+(CO\textsubscript{2})\textsubscript{n} complexes \((n = 2–14)\), the asymmetric CO stretch band showed a blue shift compared to the free CO\textsubscript{2}. The blue shift decreased initially with cluster size, but became nearly constant after \(n = 4 \). The photochemistry of Zn, Sr, Cu, Ag and Au complexes were also investigated.114–119 Photodissociation studies of metal complexes are listed in Table 1.

References

Table 1 Photodissociation of metal complexes (Continued)

<table>
<thead>
<tr>
<th>Metal:ligand</th>
<th>Wavelength/ wavenumber</th>
<th>Method</th>
<th>Detected species</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu+(furan)</td>
<td>355 nm</td>
<td>PDS</td>
<td>Furan+</td>
<td>119</td>
</tr>
<tr>
<td>Ag+(furan)</td>
<td>355 nm</td>
<td>PDS</td>
<td>Furan+</td>
<td>119</td>
</tr>
<tr>
<td>Au+(furan)</td>
<td>355 nm</td>
<td>PDS</td>
<td>Furan+, C\textsubscript{3}H\textsubscript{4}+</td>
<td>119</td>
</tr>
</tbody>
</table>

a Photodissociation spectroscopy. b Evaporation of ligand(s). c L = loss of one ligand (CH\textsubscript{3}OD), –D = loss of one D atom, –Me = loss of one methyl group (CH\textsubscript{3}).