

Figure 17.1: The formation of a liquid solution can be divided into three steps


Concentration
Molarity =
Moles of solute/Liters of Solution (M)
Molality =
Moles of solute/Kg of Solvent (m)
Mole Fraction=
Moles solute/total number of moles
Mass \%=
Mass solute/total mass x 100

Concentration
Molarity =
Moles of solute/Liters of Solution (M)
Molality =
Moles of solute/Kg of Solvent (m)
Mole Fraction=
Moles solute/total number of moles

Mass \%=
Mass solute/total mass x 100

Concentration
Molarity $=$
Moles of solute/Liters of Solution (M)
Molality =
Moles of solute/Kg of Solvent (m)
Mole Fraction=
Moles solute/total number of moles

Mass \%=
Mass solute/total mass x 100

A sample of $\mathrm{NaNO}_{3}$ weighing 8.5 grams is placed in a 500 ml volumetric flask and distilled water was added to the mark on the neck of the flask. Calculate the Molarity of the resulting solution.

Convert the given grams of solute to moles of solute :
$8.5 \mathrm{~g} \mathrm{NaNO}_{3} \frac{1 \mathrm{~mole} \mathrm{NaNO}_{3}}{85 \mathrm{~g} \mathrm{NaNO}_{3}}=0.1$ mole $\mathrm{NaNO}_{3}$
Convert given ml of solution to liters
$500 \mathrm{ml} \frac{1 \text { liter }}{1000 \mathrm{ml}}=0.5$ liter
Apply the definition for Molarity: Molarity $=$ moles $\mathrm{NaNO}_{3} /$ volume of the solution in liters
$\mathrm{M}=0.1$ mole $/ .500$ liters $=\underline{0.200 \text { Molar }^{N a N O_{3}^{3}}}$

Molarity =
Moles of solute/Liters of Solution (M)
Molality =
Moles of solute/Kg of Solvent (m)
Mole Fraction=
Moles solute/total number of moles

Mass \%=
Mass solute/total mass x 100

Molarity =
Moles of solute/Liters of Solution (M)
Molality $=$
Moles of solute/Kg of Solvent (m)
Mole Fraction=
Moles solute/total number of moles
Mass \%=
Mass solute/total mass x 100

Determine the mole fraction of KCl in 3000 grams of aqueous solution containing $\mathbf{3 7 . 3}$ grams of Potassium Chloride KCl.

1. Convert grams KCl to moles KCl using the molecular weight of KCl
$37.3 \mathrm{~g} \mathrm{KCl} \frac{1 \mathrm{~mole} \mathrm{KCl}}{74.6 \mathrm{~g} \mathrm{KCl}}=0.5$ mole KCl
2. Determine the grams of pure solvent water from the given grams of solution and solute
Total grams $=\mathbf{3 0 0 0}$ grams $=$ Mass of solute + Mass of water Mass of pure solvent $=(\mathbf{3 0 0 0}-\mathbf{3 7 . 3})$ gram
$=2962.7 \mathrm{gram}$

Determine the mole fraction of KCl in 3000 grams of aqueous solution containing 37.3 grams of Potassium Chloride KCl.
3. Convert grams of solvent $\mathrm{H}_{2} \mathrm{O}$ to mols
(2962.7 grams water) $\frac{1 \mathrm{~mol}}{18.0 \text { grams }}=164.6 \mathrm{mols} \mathrm{H}_{2} \mathrm{O}$
4. Apply the definition for mole fraction mole fraction = moles of $\mathrm{KCl} /$ Total mols of KCl and water $=$
$0.5 /(\mathbf{0 . 5}+164.6)=0.5 / 165.1=\underline{0.00303}$


## Factors Affecting Solubility <br> Solute-Solvent Interactions <br> Polar liquids tend to dissolve in polar solvents. <br> - Miscible liquids: mix in any proportions. <br> Immiscible liquids: do not mix. <br> Intermolecular forces are important: water and ethanol are miscible because the broken hydrogen bonds in both pure liquids are re-established in the mixture. <br> - The number of carbon atoms in a chain affect solubility: the more C atoms the less soluble in water.

## Factors Affecting Solubility

Solute-Solvent Interactions

- The number of -OH groups within a molecule increases solubility in water.


Factors Affecting Solubility
Solute-Solvent Interactions


(a)

(b)

## Factors Affecting Solubility

Solute-Solvent Interactions

- Generalization: "like dissolves like".
- The more polar bonds in the molecule, the better it dissolves in a polar solvent.
- The less polar the molecule the less it dissolves in a polar solvent and the better is dissolves in a nonpolar solvent.
- Network solids do not dissolve because the strong intermolecular forces in the solid are not reestablished in any solution.

Factors Affecting Solubility
Gas - solvent: Pressure Effects


## Factors Affecting Solubility

Gas - solvent: Pressure Effects

- Solubility of a gas in a liquid is a function of the pressure of the gas.
- The higher the pressure, the more molecules of gas are close to the solvent and the greater the chance of a gas molecule striking the surface and entering the solution.
- Therefore, the higher the pressure, the greater the solubility.
- The lower the pressure, the fewer molecules of gas are close to the solvent and the lower the solubility.


## Factors Affecting Solubility

Gas - solvent: Pressure Effects

Henry's Law: $\quad C_{g}=\boldsymbol{k} \boldsymbol{P}_{\boldsymbol{g}}$
$C_{g}$ is the solubility of gas, $P_{g}$ the partial pressure, $k$ = Henry's law constant.
Carbonated beverages are bottled under $>1 \mathrm{~atm}$. As the bottle is opened, $P_{g}$ decreases and the solubility of $\mathrm{CO}_{2}$ decreases. Therefore, bubbles of $\mathrm{CO}_{2}$ escape from solution.

Gas - solvent: Pressure Effects
$\mathrm{H}_{2} \mathrm{CO}_{3} \leftrightharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
$k_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{Ha}_{3} \mathrm{OO}_{3}\right]}=4.5 \times 10^{-7}$

$$
=\frac{x^{2}}{1.2 \times 10^{-5}}
$$

$\rightarrow x=\left[\mathrm{H}^{+}\right]=2.3 \times 10^{-6} \mathrm{Mol} /$ liter
$\rightarrow P_{7}=-\log \left[\mathrm{H}^{+}\right]=5.6$


dissolution of $\mathrm{SO}_{2}$ and $\mathrm{NO}_{\mathrm{x}} \rightarrow \mathrm{ACID}$ RAIN

$\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}^{2+}$

## Factors Affecting Solubility

Temperature Effects
Experience tells us that sugar dissolves better in warm water than cold, but Coca Cola goes flat when warm.

- As temperature increases, solubility of solids generally increases.
- As temperature increases, solubility of gasses generally decreases.


## Factors Affecting Solubility

Temperature Effects: solids



Temperature Dependence of Gas Solubility

- $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
- gas $\rightarrow$ solution
- $\Delta \mathrm{S}$ is negative
- $\Delta \mathrm{H}$ is negative
- -T $\Delta \mathrm{S}$ is positive
- $\Delta \mathrm{G}$ becomes more positive when T increases
- Therefore, solubility decreases

$C_{g}=k P_{g}$
Henry's Law Constant Depends on T


## Factors Affecting Solubility

Temperature Effects

- Gases are less soluble at higher temperatures.
- Thermal pollution: if lakes get too warm, $\mathrm{CO}_{2}$ and $\mathrm{O}_{2}$ become less soluble and are not available for plants or animals.
- In global warming modeling, $\mathrm{CO}_{2}$ may be released from the oceans



## Colligative Properties

- Colligative properties depend on quantity of solute molecules.
(E.g. freezing point depression and boiling point elevation.)

NB: quantity is what? Mass? Volume? Number?


## Colligative Properties

Lowering the Vapor Pressure
Non-volatile solvents reduce the ability of the surface solvent molecules to escape the liquid.
Therefore, vapor pressure is lowered.
The amount of vapor pressure lowering depends on the amount of solute.
(mass, number, volume, what?)


The vapor pressure of pure water is greater than the vapor pressure of the solution


Water condenses in the solution because the vapor pressure in the chamber is greater than the equilibrium vapor pressure of the solution


Aqueous Solution


After a time, the levels are unequal.
-What conditions exist when the equilibrium point is reached and no further change in the volumes occurs?

## Raoult's Law

## - Raoult's Law:

$P_{A}$ is the vapor pressure of A with solute
$P_{A}{ }^{\circ}$ is the vapor pressure of A alone
$X_{A}$ is the mole fraction of A

$$
P_{A}=X_{A} P_{A}{ }^{o}
$$

For a solution that obeys Raoult's law, a plot of $P_{\text {soln }}$ versus $x_{\text {solvent }}$ yields a straight line.


$$
\begin{aligned}
& y=m x+b ; b=0 \\
& y=P_{\text {goln }} \\
& x=x_{\text {spilvent }} \\
& m=P_{\text {solvent }}
\end{aligned}
$$




Calculation of Vapor Composition ( $50 / 50$ mix of boiling benzene and toluene)

- $\mathrm{P}^{\mathrm{o}}$ toluene $=38$ Torr; $\mathrm{P}^{\mathrm{o}}$ benzene $=92$ Torr
- Take $\mathrm{X}_{\mathrm{b}}=\mathrm{X}_{\mathrm{t}}=0.50$
- $\mathrm{P}_{\mathrm{A}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{\circ}$ Raoult's Law
- $\mathrm{P}_{\mathrm{b}}=(92$ Torr $)(0.5)=46$ Torr;
- $\mathrm{P}_{\mathrm{t}}=(38$ Torr $)(0.5)=19$ Torr
- $\mathrm{P}_{\text {total }}=46+19=65$ Torr
- $\mathrm{X}_{\mathrm{A}}{ }^{\text {vap }}=\mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\text {tot }}$
- $\mathrm{X}_{\mathrm{b}}{ }^{\text {vap }}=46$ Torr/65 Torr $=0.71$
- $\mathrm{X}_{\mathrm{t}}{ }^{\text {vap }}=1.00-0.71=0.29$


## Raoult's Law

Ideal solution: one that obeys Raoult's law.

Raoult's law breaks down when the solventsolvent and solute-solute intermolecular forces differ from solute-solvent intermolecular forces.

Calculation of Vapor Composition ( $50 / 50 \mathrm{mix}$ of boiling benzene and toluene)

- $\mathrm{P}^{\mathrm{o}}$ toluene $=38$ Torr; $\mathrm{P}^{\mathrm{o}}$ benzene $=92$ Torr
- Take $X_{b}=X_{t}=0.50$
- $\mathrm{P}_{\mathrm{A}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{\circ}$ Raoult's Law
- $\mathrm{P}_{\mathrm{b}}=(92$ Torr $)(0.5)=46$ Torr;
- $\mathrm{P}_{\mathrm{t}}=(38$ Torr $)(0.5)=19$ Torr
- $\mathrm{P}_{\text {total }}=46+19=65$ Torr
- What is the composition above the solution?




## A Problem

- 20 g of an unknown solid is dissolved in 125 g of water at $25^{\circ} \mathrm{C}$. What is the molecular weight of the solid if the observed vapor pressure was 21.72 torr and pure water usually has a vapor pressure of 23.76 torr at this temperature?



## Colligative Properties

Boiling-Point Elevation and Freezing-Point Depression


## Colligative Properties

Boiling-Point Elevation

Molal boiling-point-elevation constant, $K_{b}$, expresses how much $\Delta T_{b}$ changes
with molality, $m$ :

$$
\Delta T_{b}=K_{b} m
$$

## Problem:

- A $0.0182-\mathrm{g}$ sample of an unknown substance is dissolved in 2.135 g of benzene.
- The solution freezes at $5.14^{\circ} \mathrm{C}$ instead of at 5.50 ${ }^{\circ} \mathrm{C}$ for pure benzene.
- $\mathrm{K}_{\mathrm{f}}$ (benzene) $=5.12{ }^{\circ} \mathrm{C} \mathrm{kg} / \mathrm{mol}$
- What is the molecular weight of the unknown substance?


## Colligative Properties

Freezing-Point Depression

- Decrease in freezing point $\left(\Delta T_{f}\right)$ is directly proportional to molality
( $K_{f}$ is the molal freezing-point-depression constant):

$$
\Delta T_{f}=K_{f} \boldsymbol{m}
$$

## Solution:

Freezing point depression $\rightarrow$ molality
$\Delta \mathrm{T}_{\mathrm{f}}=(5.50-5.14)=0.36{ }^{\circ} \mathrm{C}$

- $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m}$
- $\mathrm{M}=0.36{ }^{\circ} \mathrm{C} /\left(5.12{ }^{\circ} \mathrm{C} \mathrm{kg} / \mathrm{mol}\right)=0.070 \mathrm{~m}$


NB: PROPERTY OF THE SOLVENT (NOT OF THE SOLUTE)

## Colligative Properties of Ionic Solutions

- For solutes that are electrolytes, we must rewrite the formulas for boiling-point elevation and freezing-point depression

- Here $i$ is the number of ions resulting from each formula unit of the solute.

Discrepancy between real and ideal Van't Hoff (i)
Consider:

$$
\begin{aligned}
& \mathrm{AlCl}_{3} \rightarrow \mathrm{Al}^{+3}+3 \mathrm{Cl}^{-} \\
& \text {ideal } \mathrm{i}=4 \text { since four particle but in actuality } \\
& \text { real } \mathrm{i}=3.2
\end{aligned}
$$

The reason measured value (3.2) is lower than ideal:
Strong electrostatic attraction between oppositely charged ions causes some of the ions to be held together through ion-pair.

Van't Hoff factor follows ideal value best when the concentration is very small. Large deviation from Van't Hoff factor with very large concentration.

Figure 17.21: In a aqueous solution a few ions aggregate, forming ion pairs that behave as a unit.


## Osmosis

- Semipermeable membrane: permits passage of some components of a solution. Example: cell membranes and cellophane.


Osmosis: the movement of a solvent from low solute concentration to high solute concentration.
There is movement in both directions across a semipermeable membrane.

- As solvent moves across the membrane, the fluid levels in the arms becomes uneven - their concentrations even.


## Colligative Properties

Osmosis

- Eventually the pressure difference between the arms stops osmosis.


A semipermeable membrane separating water and an aqueous solution of glucose.


L E Z I O N I ACCADEMICHE
D. EVANGELIST

TORRICELLI
Mattematico, e Filofofo
DEL SERENISS. FERDINANDO
GRAN DUCA DI TOSCANA
Letrure delle Matrematide mello Studio di Firenze e accadrmico della crusca.


Osmosis

- Osmotic pressure, $\pi$, is the pressure required to stop osmosis:

$$
\pi=M R T
$$

$\Pi=$ osmotic pressure $\quad \mathrm{M}=$ Molarity ( $\mathrm{mol} / \mathrm{L}$ )
$\mathrm{R}=$ Ideal Gas Constant $\quad \mathrm{T}=$ Temperature $(\mathrm{K})$

## Osmotic Pressure is a VERY sensitive measure of Molarity

Seawater contains 3.4 g NaCl per liter
$\mathrm{M}=3.4 \mathrm{~g} / 58.5 \mathrm{~g} / \mathrm{L}=0.0582 \mathrm{M}$
$\Pi=(0.0582 \mathrm{~mol} / \mathrm{L})(0.0821 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(298 \mathrm{~K})$
$\Pi=1.42 \mathrm{~atm}$
1 atm supports column of water 10.34 m length
$(0.42 \mathrm{~atm})(10.34 \mathrm{~m} / \mathrm{atm})=4.34 \mathrm{~m}$
$(4.34 \mathrm{~m})(3.28 \mathrm{ft} / \mathrm{m}) \sim 14.2$ feet

## Tonicity is a relative term

- Hypotonic Solution - One solution has a lower concentration of solute than another.
- Hypertonic Solution - one solution has a higher concentration of solute than another.
- Isotonic Solution - both solutions have same concentrations of solute.


## Osmosis

- Crenation:
-red blood cells placed in hypertonic solution (relative to intracellular solution);
-there is a higher solute concentration in the surrounding tissue than in the cell ;
- osmosis occurs and water passes through the membrane out of the cell.
-The cell shrivels up.

- Hemolysis:

Osmosis

- red blood cells placed in a hypotonic solution;
- there is a lower solute concentration outside the cell;
- osmosis occurs and water moves into the cell.
- The cell bursts.
- To prevent crenation or hemolysis, IV (intravenous) solutions must be isotonic.



## Osmosis

- Examples of osmosis:
- Cucumber placed in NaCl solution loses water to shrivel up and become a pickle.
- Limp carrot placed in water becomes firm because water enters via osmosis.
- Salty food causes retention of water and swelling of tissues (edema).
- Water moves into plants through osmosis.
- Salt added to meat or sugar to fruit prevents bacterial infection (a bacterium placed on the salt will lose water through osmosis and die).




## Colligative properties

- Vapor pressure -
- Freezing point depression -
- Boiling point elevation -
- Osmosis -

Mole fraction
molality molality
Molarity

Figure 17.22: The Tyndall effect


Source: Stock Boston


