LIGHT
Special topics.
1. Greenhouse effect
2. Ozone hole
3. Polarization
At ~300K (20°C) light emitted between 4-100 μm.

Light absorbed by Earth surface 300-2000 nm

Light re-emitted by Earth surface 5-100 μm

Thermal IR

Heat = IR light

Examples - Night Vision Goggles
- Heat seeking missiles
- Target marking laser
- Outdoor warming lamps
- Food warming lamps

\[F_e = \int I(\lambda)\,d\lambda \]
\[= \int \frac{\Delta T}{T_e} \, d\lambda \]
\[\lambda = 5.87 \times 10^{-8} \, m^2 \, K^{-4} \]
\[F_\lambda (1-A) \pi r^2 = \frac{4\pi r^2}{\pi} \frac{\Delta T}{T_e} \]
\[\rightarrow T_e = \left[\frac{(1-A)F_\lambda}{4\pi} \right]^{1/4} \]
\[= -19°C \quad \text{Too Cold!} \]

Earth +36
Mars +6
Venus +505

The secret to a warm Earth. Tropospheric gases which can absorb thermal IR Absorb Thermal IR Radiate 1/2 Back to Earth

Tropospheric gases absorb thermal IR and radiate 1/2 back to Earth.
In 1780, the famous English chemist Joseph Priestley (right) found that plants could "restore air which has been injured by the burning of candles." He used a mint plant, and placed it into an upturned glass jar in a vessel of water for several days. He then found that "the air would neither extinguish a candle, nor was it all inconvenient to a mouse which I put into it". In other words, he discovered that plants produce oxygen.

A few years later, in 1794, the French chemist Antoine Lavoisier (left), discovered the concept of oxidation, but soon after was executed during the French Revolution for being a Monarchist sympathiser. The judge who pronounced sentence said "The Republic has no need for scientists".
Ozone hole

\[\text{O}_2 + h\nu \rightarrow \text{O} + \text{O} \quad \text{for } \lambda < 242.4 \text{ nm} \]
\[\text{O}_3 + h\nu \rightarrow \text{O}_2 + \text{O} \quad \text{for } \lambda < 280 \text{ nm} \]
\[\text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M} \]
\[\text{O} + \text{O}_3 \rightarrow \text{O}_2 + \text{O}_2 \]
The Dobson Unit: DU

\[2 \text{DU} = 0.05 \text{mm} \text{O}_3 \text{ at 1 atm } 0^\circ \text{C} \]

\[\frac{10^3 \text{cm}}{\text{m}} \times \frac{1 \text{ atm}}{\text{m}} \]

\[= 1 \text{ cm} \text{ atm} = 1 \text{ DU} \]

Normal: \(\approx 350 \text{ DU} \)

Equivalent to 3.5 mm at surface

Remember \(PV = nRT \)

Recipe for \(\text{O}_3 \) Loss

1. Polar WINTER \(\rightarrow \) Polar VORTEX
 \(\rightarrow \) Stratospheric air
2. Low \(T \)
 \(\rightarrow \) Polar Stratospheric Clouds (PSC)
 \(\rightarrow \) Nitric acid (HNO3)
3. Surface Chemistry
 \(\rightarrow \) \(\text{O}_3 \)
 \(\rightarrow \) catalytic destruction of \(\text{O}_3 \)
4. Light returns
 \(\rightarrow \) \(\text{Cl}_2 \)
 \(\rightarrow \) Catalytic destruction of \(\text{O}_3 \)
Electromagnetic Radiation

Unpolarized light

Polarized light

Polarizing sun glasses reduce glare of polarized reflections from surfaces
Mirror image of hand

Polarization

Optical Isomer and Interaction with Light

Dextrorotatory- “d” isomer
Complex which rotates plane of polarized light to the right.

Levorotatory- “l” isomer
Complex which rotates plane of polarized light to the left.

Chiral molecules are optically active because effect on light...