

Applications of Deuterium-Labelled Compounds in Total Synthesis and Drug Development

Kai Yu

Zakarian Group University of California, Santa Barbara 10/18/2018

From First Approved Deuterated Drug Back to Deuterium

deutetrabenazine (Austedo)

- First deuterated drug from Teva Pharmaceuticals
- $\cdot\,$ Approved by FDA in 2017
- The treatment of chorea associated with Huntington's disease
- Beneficial deuterium effect: reduce rate of active metabolite demethylation driven by CYP2D6
- Higher efficacy at a lower doses and with a longer duration of action

- · One of two stable isotopes of hydrogen
- Natural abundance: 0.0115% (earth)
- First discovered specterscopically and named by Harold Urey in 1931
- Deuterium won Urey the Nobel Prize in Chemistry in 1934.
- Famous by heavy water and "hydrogen bomb"

Application of Deuterated Compounds

Total synthesis: modify reaction selectivity

Drug development: enhance metabolic stability

Mass spectrometry internal standards

Clarification of organic reaction mechanisms

Elucidation of biosynthetic routes

Application of Deuterated Compounds

Total synthesis: modify reaction selectivity

Drug development: enhance metabolic stability

Mass spectrometry internal standards

Clarification of organic reaction mechanisms

Elucidation of biosynthetic routes

Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid M. Angew. Chem. Int. Ed. 2018, 57, 1758-1784.

- Kinetic isotope effect (KIE) is observed in between the isoptopically labelled molecules showing different reaction rates.
- Primary KIE is attributed to a bond breaking event at the C-H/C-D bond.
- Vibrational frequency is relative to reduced mass μ .
- For C-D, lower vibrational frequency and lower zero-point energy (ZPE)

- Secondary KIE is the effect attributed to a rehybridization or arises from isotopic substitution remote from the bonds undergoing reaction.
- The large difference in force constant for the out-of-plane bend of an sp³ hybrid versus and sp² hybrid means that there will be a significant difference in ZPE differences between C-H and C-D bonds.
- Similarly, a large difference in the frequency of the in-plane bend exists between sp² and sp hybrids

- Secondary KIE is the effect which is attributed to a rehybridization or arises from isotopic substitution remote from the bonds undergoing reaction.
- The large difference in force constant for the out-of-plane bend of an sp³ hybrid versus and sp² hybrid means that there will be a significant difference in ZPE differences between C-H and C-D bonds.
- Similarly, a large difference in the frequency of the in-plane bend exists between sp² and sp hybrids

Anslyn, E. V.; Doughery, D. A. Modrn Physical Organic Chemistry; University Science Books, 2006

- Secondary KIE is the effect which is attributed to a rehybridization or arises from isotopic substitution remote from the bonds undergoing reaction.
- The large difference in force constant for the out-of-plane bend of an sp³ hybrid versus and sp² hybrid means that there will be a significant difference in ZPE differences between C-H and C-D bonds.
- Similarly, a large difference in the frequency of the in-plane bend exists between sp² and sp hybrids

- Path A: nucleophilic addition to the flavin
- Path B: single electron transfer to the flavin followed by the coupling between two radicals.

Kurtz, K. A.; Fitzpatrick, P. F. *J. Am. Chem. Soc.* **1997**, 119, 1155. Anslyn, E. V.; Doughery, D. A. *Modrn Physical Organic Chemistry*; University Science Books, 2006

- Secondary KIE is the effect which is attributed to a rehybridization or arises from isotopic substitution remote from the bonds undergoing reaction.
- The large difference in force constant for the out-of-plane bend of an sp³ hybrid versus and sp² hybrid means that there will be a significant difference in ZPE differences between C-H and C-D bonds.
- Similarly, a large difference in the frequency of the in-plane bend exists between sp² and sp hybrids

Applying Deuterium KIE in Total Synthesis

fredericamycin A

aziridinomitosenes

N-methylwelwitndolinone C

Fredericamycin A

fredericamycin A

- Antitumor antibiotic agent isolated from *Steptomyces griseus*
- Vitro cytotoxic acitivity and efficacious antitumor acitvity
- Procaryotic RNA/protein synthesis are inhibited
- Synthesized by Derrick L. J. Clive et al. in 1994.
- \cdot Key step 5-exo-digonal radical spirocyclization
- Possibly the first application of deuterium KIE in total synthesis

quinone system of fredericamycin A

Fredericamycin A

Clive, D. L. J. *Tetrahedron* **1993**, *49*, 7917-7930. Clive, D. L. J. *J. Am. Chem. Soc.* **1994**, *116*, 11275-11286.

Fredericamycin A: Deuterium KIE suppress the hydrogen migration

Enhancing the stability of peri-methoxy group

Fredericamycin A: Deuterium KIE suppress the hydrogen migration

 $k_{\rm H}/k_{\rm D} = 15.6$

Later revomal of deuterated unit

Aziridinomitosenes

- Metabolic activation of FR66979 and FR900482 generates intermediate A having an ability to cross-link DNA.
- Leucoaziridinomitosenes B are responsible for the antitumor activity of the mitomycin antibiotics.
- Delocalization helps to stabilize carbonyl derivatives **C**, which had been synthesized.
- Nonstabilized core structure **D** was synthesized for the first time by Edwin Vedejs *et al*.

Aziridinomitosenes: Deuterium as a removable blocking group

Aziridinomitosenes: Deuterium as a removable blocking group

 $k_{\rm H}/k_{\rm D} = 8.8$

Aziridinomitosenes: Deuterium as a removable blocking group

Norzoanthamine

- Isolated by Uemura et al. in 1995 from Zoanthus sp.
- Strong inhibition on the the growth of P-388 murine leukemia cell lines and human platelet aggregation
- A promising candidate for an antiosteoporotic drug
- Stereoselectively synthesized by Masaaki Miyashita et al. in 41 steps • with an overall yield of 3.5% (an average of 92% yield each step).

norzoanthmine

Norzoanthamine: Deuterium KIE inhibits the [1,5]-hydrogen shift

 $k_{\rm H}/k_{\rm D} = 4.1$

Norzoanthamine: Deuterium KIE inhibits the [1,5]-hydrogen shift

Welwitindolinones

Welwitindolinones: Deuterium KIE improves nitrene insertion

 $k_{\rm H}/k_{\rm D} = 5.7$

Welwitindolinones: Deuterium KIE improves nitrene insertion

Danicalipin A

- Comprise >90% of all polar lipids in the flagellar membrane of freshwater
 Ochromonas danica algae
- Two anionic sulfate moieties: one at the terminus; one near the otherwise hydrophobic center
- Synthesized by Noah Burns et al. in 2% yield in 8 steps, which is the shortest.

Danicalipin A

Danicalipin A

- Deuteration renders the hydrogen bonding of secondary alcohol less effective.
- Bromium formation is reversible and deprotonation of the alcohol during bromoetherification is selective determining.

Application of Deuterated Compounds

Total synthesis: modify reaction selectivity

Drug development: enhance metabolic stability

Mass spectrometry internal standards

Clarification of organic reaction mechanisms

Elucidation of biosynthetic routes

Applying Deuterium to Improve Existing Drugs

B) Tolerability/Efficacy

- The major metabolizing enzymes in humans belong to cytochrome P450 enzyme family.
- Significant KIEs have been observed for several P450-catalyzed reactions.
- Potential deuterated drug benefits:
 - · A reduced dosage or dosing regimen
 - A smaller potential for drug-drug interactions
 - · A lower incidence of side effects

Deuterium clinical drug candidates

Chemical Structure	Compound	Status	Beneficial Deuterium Effect
F D NH ₂	Fludalnine (MK-0641)	First deuterated drug candidate to enter clinic (1970s) Discontinued	Reduce toxic metabolite, 3- fluorolactate
D_3C D_3C D_3C O H H H H H H H H H H	Austedo® Deutertrabenazine (SD-809)	First deuterated drug approved (2017) Approved	Reduce rate of active metabolite demethylation driven by CYP2D6
D_3C^{-N}	d ₆ -dextromethorphan (AVP-786)	Phase 3	Reduce formation of toxic metabolite by CYP2D6
$D_{3}C \xrightarrow{O}_{D} \xrightarrow{O}_{N} \xrightarrow{N}_{N}$	d₅-pentoxifylline (CT-499)	Phase 2	Reduce metabolism speed; primary metabolite raising up to 3 times than that of pentoxifylline

Sabounjian, L. A. *Clin. Pharmacol. Drug Dev.* **2016**, *5*, 314-425. Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid M. *Angew. Chem. Int. Ed.* **2018**, *57*, 1758-1784. https://www.concertpharma.com/research/documents/CTP-499ASN2014PosterFINAL14NOV2014.pdf https://en.wikipedia.org/wiki/Deuterated_drug#VX-561_(Vertex/Concert)

Deuterium clinical drug candidates

Chemical Structure	Compound	Status	Beneficial Deuterium Effect
$ \begin{array}{c} H \\ H $	d₀-ivacaftor (VX-561)	Phase 2	Reduce rate of tert-butyl group oxidation and in vivo clearance by CYP3A4
$ \begin{array}{c} & & & \\ & $	VX-984	Phase 1	Reduce aldehyde oxidase(AO)-driven metabolism
	d₁-(<i>R</i>)-pioglitazone (DRX-065)	Phase 1	Stabilize preferred R-enantiomer to obtain mitochondrial function modulation without affected by S-isomer
	d2-linoleic acid ethyl ester (RT001)	Phase 1/2	Limit lipid peroxidation

Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid M. Angew. Chem. Int. Ed. 2018, 57, 1758-1784.

https://www.cancer.gov/publications/dictionaries/cancer-drug/def/dna-dependent-protein-kinase-inhibitor-vx-984

https://en.wikipedia.org/wiki/Deuterated_drug#VX-561_(Vertex/Concert)