

Selective C-C Bond Activation/Cleavage of Pinene Derivatives and Application in Total Synthesis

Joshua J. Gladfelder

Zakarian Group October 11th, 2018 University of California, Santa Barbara

Outline

- Brief overview of C-C bond activation
- Selective C-C bond activation of pinene derivatives
- Application to synthesis of phomactin natural products

Phomactin Q

C-C Bond Activation

Strategy 1: Increase energy state of starting materials

-High energy starting materials such as strained 3- or 4- membered ring compounds

Strategy 2: Lower energy state of the C-C bond cleaved complexes

-Take advantage of driving forces (i.e. aromatic stabilization energy) -Chelation assistance

Strategy 1: Increase the energy state of starting materials

Direct cleavage of the C-C bond by transition metal catalysis

M. Murakami, J. Am. Chem. Soc., 1998, 120, 9949-9950.

Bond B

β -Alkyl elimination of a strained molecule

S. Uemura, J. Am. Chem. Soc., 2003, 125, 8862-8869.

Strategy 2: Lower the energy state of the intermediate

β -Alkyl elimination of unstrained molecules

T. Mitsudo, J. Am. Chem. Soc., 1998, 120, 5587-5588.

C-C bond activation by chelation assistance

C.-H. Jun, J. Chem. Soc., Chem. Commun., 1985, 92-93.

Selective C-C bond activation of pinene derivatives

Unified, carvone based strategy to natural product core scaffolds

Selective C-C bond activation of pinene derivatives

F. Bermejo, Tetrahedron, 2006, 62, 8933-8942; F. Bermejo, J. Org. Chem., 2009, 74, 1798-1801.

R. Sarpong, J. Am. Chem. Soc., 2015, 137, 6327-6334.

Selective C-C bond activation of pinene derivatives

-Selectivity in C-C activation? (C1-C2 vs C1-C4)

-C1-C4 bond is weaker, longer:

- **5a** C1-C2 = 1.551 Å C1-C4 = 1.567 Å
- **5b** C1-C2 = 1.535 Å C1-C4 = 1.589 Å

-Methods for fragmentation/rearrangement of pinene: *m*-CPBA, Brønsted acid, NBS

5b

m-CPBA promoted C-C bond cleavage

PPTS promoted C-C bond cleavage

NBS promoted C-C bond cleavage

1.

2.

3.

1.

Selective Rh-catalyzed C1-C2 bond cleavage/activation

Mechanistic analysis: selective Rh-catalyzed cleavage

Mechanistic hypothesis

R. Sarpong, J. Am. Chem. Soc., 2015, 137, 6327-6334.

Mechanistic analysis: selective Rh-catalyzed cleavage

Selective Rh-catalyzed C1-C2 bond cleavage/activation

Energy profile of the C-C/C-H activation and reductive elimination steps

Numbers represent relative energies in kcal mol⁻¹. Numbers in brackets are calculated gas-phase energies.

-27 Phomactins

-First isolated in 1991 from Phoma sp.

(A-G, phomacta-1(14),3,7-triene, and Sch 49027)

-Phomactins H-P isolated from fungus MPUC 046

-Q-V from Biatriospora sp.

-Phomactin A emerged from PAFR antagonist assay

-PAFR antagonists as adjuvants in cancer therapy

-Six total synthesis reported so far (4 racemic, 18-37 steps)

Phoma glomerate. (https://www.inspq.qc.ca/en/moulds/factsheets/phoma-glomerate)

Table 1 PAFR-inhibitory concentration (IC ₅₀) of phomac	tins
(μM)	

Phomactins	IC ₅₀
Phomactin A	3.8
Phomactin F	2.7
Phomactin I	3.2
Phomactin P	3.0
Phomactin R	2.5
Phomactin S	2.8
Phomactin U	10.0
Phomactin V	3.1
WEB 2170	3.2

Concentration of phomactins or WEB 2170 (in μ M) that reduced 50% of the response to 10 nM of cPAF (IC₅₀). Inhibitory doses were generated using three-parameter non-linear regression analysis from n=3 independent experiments (see the 'Biological assays' and 'Statistical analysis' sections for more details). cPAF, carbamoyl-PAF (1-hexadecyl-2-N-methylcarbamoyl glycerophosphocholine).

congeners		
Phomactins	% inhibition of RLU*	
Phomactin A	55 ± 11	
Phomactin R	83±7	
Phomactin S	68±2	
Phomactin P	29±5	
Phomactin U	34±5	
Phomactin F	77±3	
Phomactin V	47±2	
Phomactin I	49 ± 6	
WEB 2170	71±2	

*% inhibition of RLU by 10 μ M of phomactin compounds or WEB 2170 relative to untreated control irradiated at 8 Gy. Data are from $n \ge 3$ independent experiments and are presented as mean \pm standard error of the mean (s.e.m.).

Table 2 | Inhibition of tumour cell repopulation by phomactin congeners